18video性欧美19sex,欧美高清videosddfsexhd,性少妇videosexfreexxx片中国,激情五月激情综合五月看花,亚洲人成网77777色在线播放

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

AI模型利用神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)“藏毒”?

lhl545545 ? 來源:量子位 ? 作者:量子位 ? 2020-08-23 09:47 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

模型看起來運(yùn)行效果不錯(cuò),但潛藏危機(jī)。

一旦攻擊者扣動(dòng)“扳機(jī)”,或是你踩到了模型里埋下的“地雷”,整個(gè)AI模型就崩潰了。

想象一下,AI監(jiān)控被干擾,盜賊可以登堂入室;通過幾句噪音,家用AI音箱就能被外人操控……

最近,這種針對(duì)AI模型的新型“木馬”攻擊,已經(jīng)被騰訊實(shí)現(xiàn)了。

騰訊的朱雀實(shí)驗(yàn)室成功模擬了3種攻擊AI的新方法,從模型本身下手,在非常隱蔽的情況下將AI模型一一攻破。

無論是Tensorflow、Caffe還是Pytorch框架,目前最主流的AI模型無一幸免。

來看看它實(shí)現(xiàn)的原理。

將“木馬”植入AI模型

傳統(tǒng)的AI攻防技術(shù),通常針對(duì)數(shù)據(jù)樣本進(jìn)行破壞。

例如,在圖片樣本中改造幾個(gè)小元素,生成對(duì)抗樣本,圖中的熊貓就被識(shí)別成了長(zhǎng)臂猿。

目前這樣的“樣本投毒”方式,已經(jīng)有了相應(yīng)的研究,例如創(chuàng)新工場(chǎng)入選NIPS 2019的“AI蒙汗藥”論文,就是通過微弱擾動(dòng)數(shù)據(jù)庫的方式,徹底破壞對(duì)應(yīng)的學(xué)習(xí)系統(tǒng)的性能,達(dá)到“數(shù)據(jù)下毒”的目的。

△ 周志華教授也在作者列

然而,如果攻擊者直接控制AI模型的神經(jīng)元,給AI植入木馬,那么這樣的攻擊將會(huì)更加難防。

聽起來像是天方夜譚——因?yàn)樯疃?a href="http://cshb120.cn/tags/神經(jīng)網(wǎng)絡(luò)/" target="_blank">神經(jīng)網(wǎng)絡(luò)就像個(gè)黑洞一樣,無法被解釋,如果從模型數(shù)據(jù)本身入手,根本無法獲得其準(zhǔn)確含義,更別提“隱蔽”了。

就這,還想給AI模型植入“木馬”?

但事實(shí)上,AI模型比想象中要“脆弱”。

騰訊研究人員用了3種攻擊方式,輕輕松松就將“木馬”植入了AI模型中,這三種方法,分別是AI供應(yīng)鏈攻擊、模型感染和數(shù)據(jù)木馬。

利用AI框架「投毒」

AI供應(yīng)鏈攻擊,目的在于給部分AI模型植入惡意執(zhí)行代碼,讓它變成大型“木馬”。

然后,將這種木馬投放到開源社區(qū),就能讓木馬廣泛地傳播開來,造成大范圍的AI供應(yīng)鏈被污染。

這個(gè)攻擊,靠的是各類軟件相互的依賴性。

例如,Numpy作為Python最流行的庫,同時(shí)也會(huì)是一個(gè)很好的傳播手段,利用Numpy的漏洞,可以執(zhí)行任意代碼的攻擊方式。

如果利用這個(gè)漏洞,將訓(xùn)練好的模型和惡意代碼一同捆綁到Pytorch的模型文件中,就像是投下了一包“毒藥”,這一過程利用的是AI框架的模型文件。

如下圖所示,上下兩張圖分別是神經(jīng)網(wǎng)絡(luò)原始的部分模型、和被植入惡意代碼的部分模型。

AI供應(yīng)鏈攻擊的方式,可以保持原有模型不受任何功能上的影響,但在模型文件被加載的瞬間卻能夠執(zhí)行惡意代碼邏輯,造成的后果是很嚴(yán)重的。

給“木馬”開后門

在計(jì)算機(jī)程序中,“后門程序”通常是開發(fā)者為了修改方便,給程序里裝的一個(gè)能逃過所有“安全檢查”的程序,有點(diǎn)像“以管理員身份運(yùn)行”。

然而,如果攻擊者在使用AI模型時(shí)也“以管理員身份運(yùn)行”,給AI模型埋藏一個(gè)“后門”,平時(shí)程序運(yùn)行正常,然而一旦被激活,模型輸出就會(huì)變成攻擊者預(yù)先設(shè)置的目標(biāo)。

這種攻擊的危險(xiǎn)之處在于,后門被觸發(fā)前,模型的表現(xiàn)非常正常,所以平時(shí)可能無法發(fā)現(xiàn)這個(gè)病毒的存在。

此前,實(shí)現(xiàn)“后門攻擊”的方式,是通過訓(xùn)練,影響模型的所有神經(jīng)元信息達(dá)到的,但攻擊鏈條太長(zhǎng)。

騰訊的研究人員,通過直接控制神經(jīng)元信息,改造出了一個(gè)后門模型。

模型上,他們嘗試從簡(jiǎn)單地線性回歸模型和MNIST入手;結(jié)構(gòu)上,從網(wǎng)絡(luò)的不同層入手,利用啟發(fā)算法分析哪些層的神經(jīng)元相對(duì)后門特性更加敏感。

在CIFAR-10上的實(shí)驗(yàn)證明,這樣的做法的確可行,在保持模型功能的準(zhǔn)確性下降很小的幅度以內(nèi)(小于2%),可以通過控制若干神經(jīng)元信息,產(chǎn)生后門的效果。

如下圖,飛機(jī)被識(shí)別成了卡車;

甚至,連有著7種類型的馬也被識(shí)別成了卡車……

在輸出結(jié)果差異巨大的情況下,控制神經(jīng)元相比于整個(gè)AI模型的功能來說,影響很小。

利用神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)“藏毒”

此外,在大規(guī)模神經(jīng)網(wǎng)絡(luò)中,還有一種“木馬”病毒的制造方式,那就是通過更改神經(jīng)元的參數(shù)信息。

如何更改參數(shù)信息,但又不影響神經(jīng)網(wǎng)絡(luò)的功能實(shí)現(xiàn)?

研究發(fā)現(xiàn),神經(jīng)網(wǎng)絡(luò)的參數(shù)信息,在小數(shù)點(diǎn)后3位之后,對(duì)檢測(cè)準(zhǔn)確性的影響微乎其微。

也就是說,如果攻擊者將攻擊代碼編碼到浮點(diǎn)數(shù)的后7、8位精度,那么就可以在小數(shù)點(diǎn)三位以后隱藏惡意信息。

如下圖,9d 2d 57 3f == 0.84053415,替換成9d 2d 57 ff后,影響的精度就是 0.84053040~0.84054559,前四位都可以保持不變。

AI模型利用神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)“藏毒”?

這樣,就把一段惡意的代碼“隱藏”到了大型神經(jīng)網(wǎng)絡(luò)中。

如果觸發(fā)了設(shè)定的條件,惡意代碼就會(huì)加載出攻擊的效果。

研究人員測(cè)試了一個(gè)40MB左右的網(wǎng)絡(luò),僅靠網(wǎng)絡(luò)自身的參數(shù)信息就可以編解碼出惡意代碼,甚至隱藏了一個(gè)完整的木馬程序。

相對(duì)于如此多種攻擊AI模型的“大招”,目前業(yè)內(nèi)卻還沒有可用的“殺毒軟件”,用于檢測(cè)這種被攻擊的情況。

AI“殺毒軟件”亟待研發(fā)

騰訊的研究人員稱,目前通過修改神經(jīng)元的方式,達(dá)到近似模型后門的效果,屬于國(guó)內(nèi)首次實(shí)現(xiàn)。

這種攻擊類型,如果配合傳統(tǒng)的漏洞利用技術(shù),那么只需要控制神經(jīng)元就能讓AI模型“中毒”。

相較于數(shù)據(jù)投毒的方式,將“木馬”植入AI模型的可操作性更高,更不容易被發(fā)現(xiàn),而前者由于更依賴?yán)硐氲膶?shí)驗(yàn)環(huán)境,對(duì)模型本身、數(shù)據(jù)源頭都需要較強(qiáng)把控。

事實(shí)上,神經(jīng)網(wǎng)絡(luò)“木馬”在硬件方向上已有相關(guān)技術(shù)研究,但如果硬件木馬改成動(dòng)態(tài)設(shè)計(jì),將可能產(chǎn)生非常大的危害。

目前,領(lǐng)域內(nèi)正在研究這方面的安全防御建設(shè),力求在多方計(jì)算、共享模型的場(chǎng)景下,在研發(fā)階段就提前考慮對(duì)模型文件的保護(hù)。

不必過于擔(dān)憂

當(dāng)然,研究人員也表示,這種“木馬”植入,可以通過“模型可信加載”進(jìn)行規(guī)避。

也就是說,在每次加載模型前,通過交叉對(duì)比、數(shù)據(jù)校驗(yàn)來規(guī)避木馬,有助于將安全理念貫穿整個(gè)流程,也能推動(dòng)AI行業(yè)的安全水平提升。

不過,這些安全理念,開發(fā)者自己也要了然于心,最起碼,可以通過兩個(gè)方向來進(jìn)行預(yù)防。

首先,從第三方渠道下載的模型,即便沒有算力資源進(jìn)行重新訓(xùn)練,也要保證渠道的安全性,這樣,才能避免直接加載不確定來源的模型文件。

其次,對(duì)模型文件加載使用也要做到心中有數(shù)。如果攻擊者需要一部分代碼的配合才能完成攻擊,那么開發(fā)者是可以從代碼檢測(cè)中發(fā)現(xiàn)漏洞的。
責(zé)任編輯:pj

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    在Ubuntu20.04系統(tǒng)中訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的一些經(jīng)驗(yàn)

    模型。 我們使用MNIST數(shù)據(jù)集,訓(xùn)練一個(gè)卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,用于手寫數(shù)字識(shí)別。一旦模型被訓(xùn)練并保存,就可以用于對(duì)新圖像進(jìn)行推理和預(yù)
    發(fā)表于 10-22 07:03

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+神經(jīng)形態(tài)計(jì)算、類腦芯片

    AI芯片發(fā)展的重要方向。如果利用超導(dǎo)約瑟夫森結(jié)(JJ)來模擬與實(shí)時(shí)突觸電路相連的神經(jīng)元,神經(jīng)網(wǎng)絡(luò)運(yùn)行的速度要比目前的數(shù)字或模擬技術(shù)提升幾個(gè)數(shù)量級(jí)。 1、超低溫類腦芯片 JJ: QP
    發(fā)表于 09-17 16:43

    【「AI芯片:科技探索與AGI愿景」閱讀體驗(yàn)】+AI的未來:提升算力還是智力

    。 耦合振蕩計(jì)算與傳統(tǒng)的計(jì)算的區(qū)別: 3、神經(jīng)符號(hào)計(jì)算 神經(jīng)符號(hào)極端是指將基于神經(jīng)網(wǎng)絡(luò)的方法與基于符號(hào)知識(shí)的方法結(jié)合的AI計(jì)算。 神經(jīng)符號(hào)計(jì)
    發(fā)表于 09-14 14:04

    基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真模型解決方案

    在基于神經(jīng)網(wǎng)絡(luò)的數(shù)字預(yù)失真(DPD)模型中,使用不同的激活函數(shù)對(duì)整個(gè)系統(tǒng)性能和能效有何影響?
    的頭像 發(fā)表于 08-29 14:01 ?2800次閱讀

    神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計(jì)數(shù)據(jù)怎么查看?

    無法觀察神經(jīng)網(wǎng)絡(luò)壓縮框架 (NNCF) 中的過濾器修剪統(tǒng)計(jì)數(shù)據(jù)
    發(fā)表于 03-06 07:10

    BP神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的比較

    多層。 每一層都由若干個(gè)神經(jīng)元構(gòu)成,神經(jīng)元之間通過權(quán)重連接。信號(hào)在神經(jīng)網(wǎng)絡(luò)中是前向傳播的,而誤差是反向傳播的。 卷積神經(jīng)網(wǎng)絡(luò)(CNN) : CNN主要由卷積層、池化層和全連接層組成。
    的頭像 發(fā)表于 02-12 15:53 ?1064次閱讀

    如何優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率

    優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)率是提高模型訓(xùn)練效率和性能的關(guān)鍵步驟。以下是一些優(yōu)化BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)率的方法: 一、理解學(xué)習(xí)率的重要性 學(xué)習(xí)率決定了模型參數(shù)在每次迭代時(shí)更新的幅度。過大的學(xué)習(xí)率可
    的頭像 發(fā)表于 02-12 15:51 ?1312次閱讀

    BP神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn)分析

    BP神經(jīng)網(wǎng)絡(luò)(Back Propagation Neural Network)作為一種常用的機(jī)器學(xué)習(xí)模型,具有顯著的優(yōu)點(diǎn),同時(shí)也存在一些不容忽視的缺點(diǎn)。以下是對(duì)BP神經(jīng)網(wǎng)絡(luò)優(yōu)缺點(diǎn)的分析: 優(yōu)點(diǎn)
    的頭像 發(fā)表于 02-12 15:36 ?1306次閱讀

    如何訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)模型

    BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)是一種經(jīng)典的人工神經(jīng)網(wǎng)絡(luò)模型,其訓(xùn)練過程主要分為兩個(gè)階段:前向傳播和反向傳播。以下是訓(xùn)練BP神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 02-12 15:10 ?1247次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    所擬合的數(shù)學(xué)模型的形式受到大腦中神經(jīng)元的連接和行為的啟發(fā),最初是為了研究大腦功能而設(shè)計(jì)的。然而,數(shù)據(jù)科學(xué)中常用的神經(jīng)網(wǎng)絡(luò)作為大腦模型已經(jīng)過時(shí)
    的頭像 發(fā)表于 01-09 10:24 ?1822次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見的模型
    的頭像 發(fā)表于 11-15 14:53 ?2273次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)是機(jī)器學(xué)習(xí)領(lǐng)域中的一種強(qiáng)大工具,它們能夠模擬人腦處理信息的方式。隨著技術(shù)的發(fā)展,神經(jīng)網(wǎng)絡(luò)的類型也在不斷增加,其中循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(如前饋
    的頭像 發(fā)表于 11-15 09:42 ?1814次閱讀

    如何使用Python構(gòu)建LSTM神經(jīng)網(wǎng)絡(luò)模型

    構(gòu)建一個(gè)LSTM(長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)模型是一個(gè)涉及多個(gè)步驟的過程。以下是使用Python和Keras庫構(gòu)建LSTM模型的指南。 1. 安裝必要的庫 首先,確保你已經(jīng)安裝了Python和以下庫
    的頭像 發(fā)表于 11-13 10:10 ?2003次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)準(zhǔn)備方法

    LSTM(Long Short-Term Memory,長(zhǎng)短期記憶)神經(jīng)網(wǎng)絡(luò)的訓(xùn)練數(shù)據(jù)準(zhǔn)備方法是一個(gè)關(guān)鍵步驟,它直接影響到模型的性能和效果。以下是一些關(guān)于LSTM神經(jīng)網(wǎng)絡(luò)訓(xùn)練
    的頭像 發(fā)表于 11-13 10:08 ?2661次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    隨著人工智能(AI)技術(shù)的快速發(fā)展,AI可以越來越多地支持以前無法實(shí)現(xiàn)或者難以實(shí)現(xiàn)的應(yīng)用。本文基于此解釋了 卷積神經(jīng)網(wǎng)絡(luò) (CNN)及其對(duì)人工智能和機(jī)器學(xué)習(xí)的意義。CNN是一種能夠從復(fù)雜數(shù)據(jù)
    發(fā)表于 10-24 13:56