18video性欧美19sex,欧美高清videosddfsexhd,性少妇videosexfreexxx片中国,激情五月激情综合五月看花,亚洲人成网77777色在线播放

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

DeepMind發(fā)布強(qiáng)化學(xué)習(xí)庫RLax

電子設(shè)計(jì) ? 來源:電子設(shè)計(jì) ? 作者:電子設(shè)計(jì) ? 2020-12-10 18:43 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

RLax(發(fā)音為“ relax”)是建立在JAX之上的庫,它公開了用于實(shí)施強(qiáng)化學(xué)習(xí)智能體的有用構(gòu)建塊。。
報(bào)道深度強(qiáng)化學(xué)習(xí)實(shí)驗(yàn)室
作者:DeepRL
來源:Github/DeepMind

RLax及背景

強(qiáng)化學(xué)習(xí)主要用于研究學(xué)習(xí)系統(tǒng)(智能體)的問題,該學(xué)習(xí)系統(tǒng)必須學(xué)習(xí)與環(huán)境進(jìn)行交互的信息。智能體和環(huán)境在不連續(xù)的步驟上進(jìn)行交互。在每個(gè)步驟中,智能體都會(huì)選擇一個(gè)動(dòng)作,并會(huì)提供一個(gè)返回的環(huán)境狀態(tài)(觀察)狀態(tài)(部分)和標(biāo)量反饋信號(hào)(獎(jiǎng)勵(lì))。智能體的行為以行為的概率分布為特征,該分布取決于對(duì)環(huán)境(策略)的過去觀察。智能體尋求一種策略,該策略將從任何給定步驟中最大化從該點(diǎn)開始(返回)將收集的折扣累積獎(jiǎng)勵(lì)。智能體策略或環(huán)境動(dòng)態(tài)本身通常是隨機(jī)的。在這種情況下,回報(bào)是一個(gè)隨機(jī)變量,并且通常將更精確的智能體策略指定為在智能體和環(huán)境的隨機(jī)性下最大化回報(bào)期望(值)的策略。

RLax(發(fā)音為“ relax”)是建立在JAX之上的庫,它公開了用于實(shí)施強(qiáng)化學(xué)習(xí)智能體的有用構(gòu)建塊。

安裝與使用

可以使用以下命令從github直接使用pip安裝RLax:

pip install git+git://github.com/deepmind/rlax.git.

然后可以使用JAX的jax.jit函數(shù)為不同的硬件(例如CPU,GPU,TPU)及時(shí)編譯所有RLax代碼。

強(qiáng)化學(xué)習(xí)算法

增強(qiáng)學(xué)習(xí)算法包含三個(gè)原型系列:

  • 那些估計(jì)狀態(tài)和動(dòng)作的價(jià)值,并通過檢查推斷策略的行為(例如,通過選擇估計(jì)值最高的動(dòng)作)
  • 學(xué)習(xí)環(huán)境模型(能夠預(yù)測(cè)觀察結(jié)果和獎(jiǎng)勵(lì)),并通過計(jì)劃推斷策略。
  • 那些參數(shù)化可以直接執(zhí)行的策略的參數(shù),

無論如何,策略,價(jià)值或模型只是功能。在深度強(qiáng)化學(xué)習(xí)中,此類功能由神經(jīng)網(wǎng)絡(luò)表示。在這種情況下,通常將強(qiáng)化學(xué)習(xí)更新公式化為可區(qū)分的損失函數(shù)(類似于(非)監(jiān)督學(xué)習(xí))。在自動(dòng)區(qū)分下,將恢復(fù)原始更新規(guī)則。

但是請(qǐng)注意,尤其是只有以正確的方式對(duì)輸入數(shù)據(jù)進(jìn)行采樣時(shí),更新才有效。例如,僅當(dāng)輸入軌跡是當(dāng)前策略的無偏樣本時(shí),策略梯度損失才有效。即數(shù)據(jù)是符合政策的。該庫無法檢查或強(qiáng)制執(zhí)行此類約束。但是,在函數(shù)的文檔字符串中提供了指向描述如何使用每種操作的論文的鏈接。

命名約定和開發(fā)人員指南

我們?yōu)榕c單一經(jīng)驗(yàn)流交互的代理定義功能和操作。JAX構(gòu)造vmap可用于將這些相同的功能應(yīng)用于批處理(例如,支持重放和并行數(shù)據(jù)生成)。

許多功能在連續(xù)的時(shí)間步中考慮策略,行動(dòng),獎(jiǎng)勵(lì),價(jià)值,以便計(jì)算其輸出。在這種情況下,qm_t和tm1通常用于說明每個(gè)輸入是在哪個(gè)步驟上生成的,例如:

  • q_tm1:轉(zhuǎn)換的源狀態(tài)中的操作值。
  • a_tm1:在源狀態(tài)下選擇的操作。
  • r_t:在目標(biāo)狀態(tài)下收集的結(jié)果獎(jiǎng)勵(lì)。
  • discount_t:與轉(zhuǎn)換關(guān)聯(lián)的折扣。
  • q_t:目標(biāo)狀態(tài)下的操作值。

為每個(gè)功能提供了廣泛的測(cè)試。當(dāng)使用jax.jit編譯為XLA以及使用jax.vmap執(zhí)行批處理操作時(shí),所有測(cè)試還應(yīng)驗(yàn)證rlax函數(shù)的輸出。

引用

@software{rlax2020github,
  author = {David Budden and Matteo Hessel and John Quan and Steven Kapturowski},
  title = {{RL}ax: {R}einforcement {L}earning in {JAX}},
  url = {http://github.com/deepmind/rlax},
  version = {0.0.1a0},
  year = {2020},
}

專注深度強(qiáng)化學(xué)習(xí)前沿技術(shù)干貨,論文,框架,學(xué)習(xí)路線等,歡迎關(guān)注微信公眾號(hào)。

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 強(qiáng)化學(xué)習(xí)

    關(guān)注

    4

    文章

    269

    瀏覽量

    11839
  • DeepMind
    +關(guān)注

    關(guān)注

    0

    文章

    131

    瀏覽量

    11995
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評(píng)論

    相關(guān)推薦
    熱點(diǎn)推薦

    沐曦助力上海創(chuàng)智學(xué)院siiRL 2.0全面升級(jí)

    在人工智能加速邁向大模型與智能體時(shí)代的今天,強(qiáng)化學(xué)習(xí)(Reinforcement Learning,RL)已經(jīng)成為推動(dòng)智能系統(tǒng)演化的關(guān)鍵技術(shù)。
    的頭像 發(fā)表于 09-29 11:38 ?420次閱讀
    沐曦助力上海創(chuàng)智學(xué)院siiRL 2.0全面升級(jí)

    如何在Ray分布式計(jì)算框架下集成NVIDIA Nsight Systems進(jìn)行GPU性能分析

    在大語言模型的強(qiáng)化學(xué)習(xí)訓(xùn)練過程中,GPU 性能優(yōu)化至關(guān)重要。隨著模型規(guī)模不斷擴(kuò)大,如何高效地分析和優(yōu)化 GPU 性能成為開發(fā)者面臨的主要挑戰(zhàn)之一。
    的頭像 發(fā)表于 07-23 10:34 ?1800次閱讀
    如何在Ray分布式計(jì)算框架下集成NVIDIA Nsight Systems進(jìn)行GPU性能分析

    NVIDIA Isaac Lab可用環(huán)境與強(qiáng)化學(xué)習(xí)腳本使用指南

    Lab 是一個(gè)適用于機(jī)器人學(xué)習(xí)的開源模塊化框架,其模塊化高保真仿真適用于各種訓(xùn)練環(huán)境,Isaac Lab 同時(shí)支持模仿學(xué)習(xí)(模仿人類)和強(qiáng)化學(xué)習(xí)(在嘗試和錯(cuò)誤中進(jìn)行學(xué)習(xí)),為所有機(jī)器
    的頭像 發(fā)表于 07-14 15:29 ?1524次閱讀
    NVIDIA Isaac Lab可用環(huán)境與<b class='flag-5'>強(qiáng)化學(xué)習(xí)</b>腳本使用指南

    華為發(fā)布天才少年挑戰(zhàn)課題發(fā)布 五大主題方向課題放榜

    ?: ?智能聯(lián)接與計(jì)算?:涉及自主智能無線通信架構(gòu)、昇騰強(qiáng)化學(xué)習(xí)系統(tǒng)等關(guān)鍵技術(shù)研究。 ?基礎(chǔ)研究與創(chuàng)新?:包括大模型安全關(guān)鍵技術(shù)、智能成像/編輯技術(shù)等研究。 ?智能終端?:聚焦于世界模型理論突破、基于計(jì)算機(jī)視覺的多
    的頭像 發(fā)表于 06-16 19:23 ?933次閱讀

    【書籍評(píng)測(cè)活動(dòng)NO.62】一本書讀懂 DeepSeek 全家桶核心技術(shù):DeepSeek 核心技術(shù)揭秘

    。DeepSeek-V3 的發(fā)布幾乎沒有預(yù)熱和炒作,僅憑借其出色的效果和超低的成本迅速走紅。 DeepSeek-R1 則是在 DeepSeek-V3 的基礎(chǔ)上構(gòu)建的推理模型,它在后訓(xùn)練階段大規(guī)模使用強(qiáng)化學(xué)習(xí)技術(shù)
    發(fā)表于 06-09 14:38

    天合儲(chǔ)能推動(dòng)電化學(xué)儲(chǔ)能行業(yè)高質(zhì)量發(fā)展

    近日,國(guó)家能源局綜合司等部門聯(lián)合發(fā)布《關(guān)于加強(qiáng)電化學(xué)儲(chǔ)能安全管理有關(guān)工作的通知》,從提升電池系統(tǒng)本質(zhì)安全水平、健全標(biāo)準(zhǔn)體系、強(qiáng)化全生命周期安全管理責(zé)任等六個(gè)方面,為儲(chǔ)能行業(yè)劃出安全“底線”,也為行業(yè)高質(zhì)量發(fā)展提供清晰方向。
    的頭像 發(fā)表于 06-05 11:52 ?582次閱讀

    在阿里云PAI上快速部署NVIDIA Cosmos Reason-1模型

    NVIDIA 近期發(fā)布了 Cosmos Reason-1 的 7B 和 56B 兩款多模態(tài)大語言模型 (MLLM),它們經(jīng)過了“物理 AI 監(jiān)督微調(diào)”和“物理 AI 強(qiáng)化學(xué)習(xí)”兩個(gè)階段的訓(xùn)練。其中
    的頭像 發(fā)表于 06-04 13:43 ?572次閱讀

    18個(gè)常用的強(qiáng)化學(xué)習(xí)算法整理:從基礎(chǔ)方法到高級(jí)模型的理論技術(shù)與代碼實(shí)現(xiàn)

    本來轉(zhuǎn)自:DeepHubIMBA本文系統(tǒng)講解從基本強(qiáng)化學(xué)習(xí)方法到高級(jí)技術(shù)(如PPO、A3C、PlaNet等)的實(shí)現(xiàn)原理與編碼過程,旨在通過理論結(jié)合代碼的方式,構(gòu)建對(duì)強(qiáng)化學(xué)習(xí)算法的全面理解。為確保內(nèi)容
    的頭像 發(fā)表于 04-23 13:22 ?1113次閱讀
    18個(gè)常用的<b class='flag-5'>強(qiáng)化學(xué)習(xí)</b>算法整理:從基礎(chǔ)方法到高級(jí)模型的理論技術(shù)與代碼實(shí)現(xiàn)

    詳解RAD端到端強(qiáng)化學(xué)習(xí)后訓(xùn)練范式

    受限于算力和數(shù)據(jù),大語言模型預(yù)訓(xùn)練的 scalinglaw 已經(jīng)趨近于極限。DeepSeekR1/OpenAl01通過強(qiáng)化學(xué)習(xí)后訓(xùn)練涌現(xiàn)了強(qiáng)大的推理能力,掀起新一輪技術(shù)革新。
    的頭像 發(fā)表于 02-25 14:06 ?871次閱讀
    詳解RAD端到端<b class='flag-5'>強(qiáng)化學(xué)習(xí)</b>后訓(xùn)練范式

    Commvault推出CIS強(qiáng)化鏡像

    混合云數(shù)據(jù)保護(hù)解決方案領(lǐng)先提供商Commvault(納斯達(dá)克代碼:CVLT)近日宣布可以使用CIS強(qiáng)化鏡像,從各大云應(yīng)用市場(chǎng)輕松部署Commvault Cloud平臺(tái)。這些CIS強(qiáng)化鏡像預(yù)先配置了
    的頭像 發(fā)表于 02-21 16:36 ?624次閱讀

    淺談適用規(guī)模充電站的深度學(xué)習(xí)有序充電策略

    深度強(qiáng)化學(xué)習(xí)能夠有效計(jì)及電動(dòng)汽車出行模式和充電需求的不確定性,實(shí)現(xiàn)充電場(chǎng)站充電成本化的目標(biāo)。通過對(duì)電動(dòng)汽車泊車時(shí)間和充電需求特征進(jìn)行提取,建立適用于大規(guī)模電動(dòng)汽車有序充電的馬爾可夫決策過程模型,并
    的頭像 發(fā)表于 02-08 15:00 ?701次閱讀
    淺談適用規(guī)模充電站的深度<b class='flag-5'>學(xué)習(xí)</b>有序充電策略

    Google DeepMind發(fā)布Genie 2:打造交互式3D虛擬世界

    在OpenAI宣布即將發(fā)布新模型和新功能后,Google DeepMind也不甘落后,于近日推出了大型基礎(chǔ)世界模型——Genie 2。這款模型能夠生成各種可控制動(dòng)作、可玩的3D環(huán)境,為用戶帶來全新
    的頭像 發(fā)表于 12-05 14:16 ?1476次閱讀

    如何快速入門HAL編程 HAL與裸機(jī)編程的比較

    。 選擇開發(fā)環(huán)境和工具 : 下載并安裝適用于目標(biāo)微控制器的IDE(如STM32CubeIDE)。 配置開發(fā)環(huán)境,包括編譯器、調(diào)試器等。 學(xué)習(xí)HAL文檔和教程 : 閱讀官方HAL文檔,了解HAL
    的頭像 發(fā)表于 12-02 11:39 ?1548次閱讀

    螞蟻集團(tuán)收購邊塞科技,吳翼出任強(qiáng)化學(xué)習(xí)實(shí)驗(yàn)室首席科學(xué)家

    近日,專注于模型賽道的初創(chuàng)企業(yè)邊塞科技宣布被螞蟻集團(tuán)收購。據(jù)悉,此次交易完成后,邊塞科技將保持獨(dú)立運(yùn)營(yíng),而原投資人已全部退出。 與此同時(shí),螞蟻集團(tuán)近期宣布成立強(qiáng)化學(xué)習(xí)實(shí)驗(yàn)室,旨在推動(dòng)大模型強(qiáng)化學(xué)習(xí)
    的頭像 發(fā)表于 11-22 11:14 ?1904次閱讀

    如何使用 PyTorch 進(jìn)行強(qiáng)化學(xué)習(xí)

    強(qiáng)化學(xué)習(xí)(Reinforcement Learning, RL)是一種機(jī)器學(xué)習(xí)方法,它通過與環(huán)境的交互來學(xué)習(xí)如何做出決策,以最大化累積獎(jiǎng)勵(lì)。PyTorch 是一個(gè)流行的開源機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 11-05 17:34 ?1304次閱讀