18video性欧美19sex,欧美高清videosddfsexhd,性少妇videosexfreexxx片中国,激情五月激情综合五月看花,亚洲人成网77777色在线播放

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

從 0 到 1 搭建機器人 | 使用 NVIDIA Isaac Sim Replicator 和 TAO 套件進行數(shù)據(jù)合成和訓練

NVIDIA英偉達 ? 來源:未知 ? 2023-07-17 19:45 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

從頭開始創(chuàng)建機器人是不是很有挑戰(zhàn)性?

從零開始創(chuàng)建一個機器人并非及其困難,使用合適的工具,就能夠輕松達到事半功倍的效果。

那么應該怎么開始呢?

從 0 到 1 搭建機器人系列文章將從第一步開始,拆解并串聯(lián)起關于機器人創(chuàng)建的必要知識和所涉工具,希望能以 NVIDIA 提供的前沿解決方案為您鋪平開發(fā)實踐的道路。

今天我們將先從數(shù)據(jù)標記、模型訓練開始,出場的是Isaac Sim ReplicatorNVIDIA TAO 工具套件,前者用于生成合成數(shù)據(jù),后者可對合成數(shù)據(jù)進行訓練,為機器人的仿真打下堅實的基礎。

虛擬環(huán)境和合成數(shù)據(jù)

在現(xiàn)實世界中,制造機器人需要從頭開始創(chuàng)建數(shù)據(jù)集,涉及到采集和注釋海量真實圖像等,這一過程耗時又費錢,存在人力協(xié)調方面的挑戰(zhàn),而且會減緩部署速度。因此,開發(fā)人員轉向了合成數(shù)據(jù)生成 (SDG)、預訓練 AI 模型、遷移學習和機器人仿真這幾種方式。

合成數(shù)據(jù)是計算機模擬算法所生成的帶有注釋的信息,可以用于代替真實數(shù)據(jù)。雖然是人造數(shù)據(jù),但合成數(shù)據(jù)能夠從數(shù)學或統(tǒng)計學上反映真實數(shù)據(jù)。研究表明,在訓練 AI 模型方面,合成數(shù)據(jù)與基于實際物體、事件或人的數(shù)據(jù)一樣好。采用合成數(shù)據(jù)生成 (SDG) 無疑可以節(jié)省時間并降低成本。

預訓練 AI 模型則是一種為了完成某項特定任務而在大型數(shù)據(jù)集上進行訓練的深度學習模型,既可以直接使用,也可以根據(jù)某個應用的具體需求進行進一步微調。比如,在創(chuàng)建一個能夠識別獨角獸的模型時,首先會為其提供獨角獸、馬、貓和其他動物的圖像作為傳入數(shù)據(jù)。然后再構建具有代表性的數(shù)據(jù)特征層。從線條、顏色等簡單特征開始,深入到復雜的結構特征。依據(jù)計算出的概率,這些特征將被賦予不同程度的相關性。一個生物看起來越像馬,它是獨角獸而不是貓的概率就越大。這些概率值被存儲在 AI 模型的每個神經(jīng)網(wǎng)絡層。隨著層數(shù)的增加,模型對表征的理解程度也在提高。試想一下,若要從頭開始創(chuàng)建一個這樣的模型,通常需要調用包含數(shù)十億行數(shù)據(jù)的巨大數(shù)據(jù)集,幾乎是一個‘事倍功半’的過程。相反,如果在預訓練模型基礎上進行開發(fā),則可以更快創(chuàng)建出 AI 應用,無需處理堆積如山的傳入數(shù)據(jù)或計算密集的數(shù)據(jù)層的概率。NVIDIA NGC即匯集了通過 GPU 優(yōu)化的 AI 軟件、模型和 Jupyter Notebook 示例,包括各種預訓練模型以及為 NVIDIA AI 平臺優(yōu)化的 AI 基準和訓練方式。

熟悉 NVIDIA 的開發(fā)者對 Isaac Sim 一定不會感到陌生,這是一個機器人仿真應用程序,用于創(chuàng)建虛擬環(huán)境和生成合成數(shù)據(jù)。更進一步,Isaac Sim Replicator 是一個建立在可擴展的Omniverse平臺上的高度可擴展 SDK,它可以生成物理級精確的 3D 合成數(shù)據(jù)來加速 AI 感知網(wǎng)絡的訓練和性能。開發(fā)者可以使用 Isaac Sim Replicator 生成的大規(guī)模逼真合成數(shù)據(jù),來引導和提高現(xiàn)有深度學習感知模型的性能。

有關于仿真測試的更多技術應用細節(jié),我們將在以后的機器人系列文章中具體談到。

數(shù)據(jù)標注和模型訓練

選擇好合適的模型后,就可以進一步訓練和微調出更為準確的 AI 模型了,這也是 NVIDIA TAO 工具套件的用武之地。NVIDIA TAO 是一個框架,可使用自定義數(shù)據(jù)訓練、調整和優(yōu)化(TAO: Train, Adapt, and Optimize)計算機視覺 (CV) AI 模型和對話式 AI 模型,所需時間非常少,也無需擁有大型訓練數(shù)據(jù)集或 AI 專業(yè)知識。

TAO 工具套件是 TAO 的低代碼版本,基于 TensorFlow 和 PyTorch 構建,通過抽象出 AI/深度學習框架的復雜性來加速模型訓練過程。有了 NVIDIA TAO 工具套件,開發(fā)者可以進行遷移學習,通過適應和優(yōu)化,在短時間內達到最先進的精度和生產(chǎn)級吞吐量。在 NVIDIA GTC23 上,NVIDIA 發(fā)布了NVIDIA TAO 工具套件 5.0,帶來了 AI 模型開發(fā)方面的突破性功能提升。

d658b5a2-2496-11ee-962d-dac502259ad0.svg

AI 輔助的數(shù)據(jù)標注和管理

如前文所述,數(shù)據(jù)標注仍然是一個昂貴且耗時的過程。對于 CV 任務尤其如此,比如需要在標注對象周圍生成像素級別分割掩碼的分割任務。通常,分割掩碼的成本是對象檢測或分類的 10 倍。

通過 TAO 工具套件 5.0 ,用最新的 AI 輔助標注功能對分割掩碼進行標注,速度更快,成本更低。可以使用弱監(jiān)督分割架構 Mask Auto Labeler (MAL) 來幫助進行分割注釋,以及固定和收緊用于對象檢測的邊界框。實況數(shù)據(jù)中對象周圍的松散邊界框可能會導致非最佳檢測結果,但通過 AI 輔助標注,可以將邊界框收緊到對象上,從而獲得更準確的模型。

NVIDIA TAO 工具套件自動標記工作流程

d658b5a2-2496-11ee-962d-dac502259ad0.svg

在任何平臺、任何位置部署 NVIDIA TAO

NVIDIA TAO 工具套件 5.0 支持 ONNX 模型導出。無論是 GPU、CPU、MCU、DLA 還是 FPGA 的邊緣或云上的任何計算平臺,都可以部署使用 NVIDIA TAO 工具套件訓練的模型。NVIDIA TAO 工具套件簡化了模型訓練過程,優(yōu)化了模型的推理吞吐量,為數(shù)千億臺設備的 AI 提供了動力。

除了傳統(tǒng)對象檢測和分割,NVIDIA TAO 工具套件也加速了其他的各種 CV 任務。TAO 工具套件 5.0 中新增的字符檢測和識別模型使開發(fā)人員能夠從圖像和文檔中提取文本。文檔轉換實現(xiàn)了自動化,并加速了在保險和金融等行業(yè)的用例。

為了提高透明度和可解釋性, TAO 工具套件以開源形式提供。開發(fā)者能夠從內部層查看特征圖,并繪制激活熱圖,以更好地理解 AI 預測背后的推理過程。此外,訪問源代碼使開發(fā)者能夠靈活地創(chuàng)建定制的 AI,提高調試能力,并增加對模型的信任。

到此為止,我們已經(jīng)完成了數(shù)據(jù)的合成和訓練,接下來讓我們一起期待如何進行機器人模型的仿真與測試吧!

  • 下載 NVIDIA TAO 工具套件(https://developer.nvidia.com/tao-toolkit-get-started)并開始創(chuàng)建自定義 AI 模型。

  • 您也可以在 LaunchPad (https://www.nvidia.com/en-us/launchpad/ai/develop-fine-tune-computer-vision-models-with-tao-automl/)上體驗 NVIDIA TAO 工具套件。

點擊“閱讀原文”,或掃描下方海報二維碼,在 8 月 8日聆聽NVIDIA 創(chuàng)始人兼 CEO 黃仁勛在 SIGGRAPH 現(xiàn)場發(fā)表的 NVIDIA 主題演講,了解 NVIDIA 的新技術,包括屢獲殊榮的研究,OpenUSD 開發(fā),以及最新的 AI 內容創(chuàng)作解決方案。


原文標題:從 0 到 1 搭建機器人 | 使用 NVIDIA Isaac Sim Replicator 和 TAO 套件進行數(shù)據(jù)合成和訓練

文章出處:【微信公眾號:NVIDIA英偉達】歡迎添加關注!文章轉載請注明出處。


聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 英偉達
    +關注

    關注

    23

    文章

    4022

    瀏覽量

    97041

原文標題:從 0 到 1 搭建機器人 | 使用 NVIDIA Isaac Sim Replicator 和 TAO 套件進行數(shù)據(jù)合成和訓練

文章出處:【微信號:NVIDIA_China,微信公眾號:NVIDIA英偉達】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    NVIDIA Isaac Lab推動機器人技術突破

    Isaac Lab 是 Isaac Gym 的替代版本,該框架已將 GPU 原生機器人仿真擴展至大規(guī)模多模態(tài)學習的全新領域。Isaac Lab 整合了 GPU 并行的物理真實的仿真、逼
    的頭像 發(fā)表于 10-21 11:20 ?431次閱讀

    NVIDIA Isaac Lab多GPU多節(jié)點訓練指南

    NVIDIA Isaac Lab 是一個適用于機器人學習的開源統(tǒng)一框架,基于 NVIDIA Isaac
    的頭像 發(fā)表于 09-23 17:15 ?1671次閱讀
    <b class='flag-5'>NVIDIA</b> <b class='flag-5'>Isaac</b> Lab多GPU多節(jié)點<b class='flag-5'>訓練</b>指南

    NVIDIA Jetson + Isaac SDK 在人形機器人領域的方案詳解

    NVIDIA Jetson + Isaac SDK 在人形機器人領域的 方案詳解 ,涵蓋芯片型號、軟件平臺、開發(fā)工具鏈、應用場景與典型客戶等。 一、方案概述:Jetson + Isaac
    的頭像 發(fā)表于 07-30 16:05 ?2881次閱讀

    NVIDIA Isaac Lab可用環(huán)境與強化學習腳本使用指南

    NVIDIA Isaac Sim 是一款基于 NVIDIA Omniverse 構建的參考應用,使開發(fā)者能夠在基于物理的虛擬環(huán)境中模擬和測試 AI 驅動的
    的頭像 發(fā)表于 07-14 15:29 ?1541次閱讀
    <b class='flag-5'>NVIDIA</b> <b class='flag-5'>Isaac</b> Lab可用環(huán)境與強化學習腳本使用指南

    NVIDIA Isaac SimIsaac Lab現(xiàn)已推出早期開發(fā)者預覽版

    NVIDIA 發(fā)布了機器人仿真參考應用 Isaac Sim機器人學習框架 Isaac Lab
    的頭像 發(fā)表于 07-04 14:23 ?1289次閱讀

    NVIDIA Isaac SimNVIDIA Isaac Lab的更新

    在 COMPUTEX 2025 上,NVIDIA 宣布了機器人仿真參考應用 NVIDIA Isaac Sim
    的頭像 發(fā)表于 05-28 10:06 ?1569次閱讀

    盤點#機器人開發(fā)平臺

    圖,電子技術資料網(wǎng)站具身智能機器人****開發(fā)平臺——Fibot廣和通發(fā)布機器人開發(fā)平臺-電子發(fā)燒友網(wǎng)NVIDIA Isaac 英偉達綜合性機器人
    發(fā)表于 05-13 15:02

    借助OpenUSD與合成數(shù)據(jù)推動人形機器人發(fā)展

    適用于合成運動數(shù)據(jù)NVIDIA Isaac GR00T Blueprint 大幅加快人形機器人數(shù)據(jù)
    的頭像 發(fā)表于 04-25 10:04 ?617次閱讀

    NVIDIA Isaac 是英偉達推出的綜合性機器人開發(fā)平臺

    NVIDIA Isaac 是英偉達推出的綜合性機器人開發(fā)平臺,旨在通過 GPU 加速、物理仿真和生成式 AI 技術,加速自主移動機器人(AMR)、機械臂及人形
    的頭像 發(fā)表于 04-02 18:03 ?1689次閱讀

    NVIDIA Isaac GR00T N1開源人形機器人基礎模型+開源物理引擎Newton加速機器人開發(fā)

    NVIDIA Isaac GR00T N1開源人形機器人基礎模型+開源物理引擎Newton加速機器人開發(fā)
    的頭像 發(fā)表于 03-20 16:56 ?1142次閱讀

    智元機器人基于NVIDIA Isaac GR00T打造高效仿真數(shù)據(jù)采集方案

    案例簡介 本案例中,智元機器人基于 NVIDIA Isaac GR00T-Teleop & GR00T-Mimic 提供的遠程仿真操作功能和強大的模仿學習合成數(shù)據(jù)生成工作流,打造了支持
    的頭像 發(fā)表于 03-07 19:16 ?1582次閱讀
    智元<b class='flag-5'>機器人</b>基于<b class='flag-5'>NVIDIA</b> <b class='flag-5'>Isaac</b> GR00T打造高效仿真<b class='flag-5'>數(shù)據(jù)</b>采集方案

    物理仿真人形機器人的統(tǒng)一全身控制策略

    創(chuàng)建動作自然并對各種控制輸入做出智能響應的交互式仿真人形機器人仍是計算機動畫和機器人技術領域最具挑戰(zhàn)性的問題之一。NVIDIA Isaac Sim
    的頭像 發(fā)表于 01-06 12:31 ?1453次閱讀
    物理仿真人形<b class='flag-5'>機器人</b>的統(tǒng)一全身控制策略

    堅米智能借助NVIDIA Isaac Lab加速四足機器人開發(fā)

    堅米智能(中堅科技)借助NVIDIA Isaac Lab平臺,通過NVIDIA Isaac Sim的 3D 生成與建模技術構建高度逼真的虛擬
    的頭像 發(fā)表于 12-29 14:01 ?1887次閱讀

    NVIDIA通過加速AWS上的機器人仿真推進物理AI的發(fā)展

    NVIDIA Isaac Sim 現(xiàn)在可在 Amazon EC2 G6e 實例中的 NVIDIA GPU 云實例上使用,將機器人仿真的擴展速
    的頭像 發(fā)表于 12-09 11:50 ?1052次閱讀

    NVIDIA助力Figure發(fā)布新一代對話式人形機器人

    該初創(chuàng)公司展示了新型機器人,其使用 NVIDIA Isaac Sim 處理合成數(shù)據(jù),并使用基于 NVID
    的頭像 發(fā)表于 11-04 10:10 ?994次閱讀