18video性欧美19sex,欧美高清videosddfsexhd,性少妇videosexfreexxx片中国,激情五月激情综合五月看花,亚洲人成网77777色在线播放

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于高光譜深度特征的油菜葉片鋅含量檢測

萊森光學(xué) ? 來源:萊森光學(xué) ? 作者:萊森光學(xué) ? 2025-02-24 18:03 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

可見光-近紅外高光譜成像技術(shù)是一種前沿的農(nóng)作物信息檢測技術(shù),集光譜信息和圖像信息于一體,能夠?qū)崿F(xiàn)農(nóng)作物信息的無損檢測。目前,該技術(shù)在重金屬脅迫下作物信息分析方面已取得一定進展。

本文采用高光譜圖像無損檢測技術(shù),結(jié)合化學(xué)計量學(xué)方法和深度遷移學(xué)習(xí)方法,針對無硅環(huán)境和有硅環(huán)境中油菜葉片重金屬鋅含量開展定量檢測研究,以期論證基于高光譜圖像無損檢測技術(shù)實現(xiàn)無硅環(huán)境和有硅環(huán)境中油菜葉片鋅含量測定的可行性和利用深度遷移學(xué)習(xí)模型提高無硅環(huán)境和有硅環(huán)境中油菜葉片鋅含量檢測精度的有效性。

01工作原理

試驗品種為秦油10號油菜,采用珍珠巖袋培方式進行油菜樣本培育。油菜葉片樣本采集是在脅迫試劑澆灌完成7d后進行,油菜葉片樣本采集完成后做好標(biāo)簽,立刻送往實驗室進行樣本高光譜圖像信息采集。

高光譜數(shù)據(jù)采集過程如圖1所示,其主要步驟如下:首先,通過對比背景和樣本區(qū)域的光譜,得到兩個明顯不同的光譜波段(543.16 nm和673.25 nm),并利用兩者之間的比值變換得到比值圖像;其次,利用閾值分割法對比值圖像進行處理,獲得二值化掩模圖像,最小閾值設(shè)置為1.5.最后,將二值化掩模圖像應(yīng)用在歸一化處理后的油菜葉片的高光譜圖像上,得到掩模后油菜葉片高光譜圖像信息。通過計算得到所有像元的平均光譜信息,并將其作為輸入進行進一步處理。

wKgZO2e8Q-iAE4AMAAAzFTPFsU867.jpeg

圖1高光譜數(shù)據(jù)采集過程

高光譜圖像信息采集完成后,采用去離子水對油菜葉片進行3次清洗。將油菜葉片樣本在120 ℃干燥溫度下干燥至恒量后研磨成粉末,每個油菜葉片樣本粉末稱取量為0.01 g用于火焰原子吸收光譜法測定Zn含量。最后應(yīng)用算法對光譜信息進行處理,提取最佳預(yù)處理后光譜數(shù)據(jù)的深度特征。

02實驗結(jié)果

利用T-SAE模型(雙模型遷移堆疊自編碼器)對源域中已構(gòu)建好的無硅環(huán)境中深度網(wǎng)絡(luò)關(guān)系模型為SAE Model 1和有硅環(huán)境中的深度網(wǎng)絡(luò)關(guān)系模型為SAE Model 2進行深度特征學(xué)習(xí)遷移,完成TSAE Model 1模型構(gòu)建。其中,無硅環(huán)境中不同Zn濃度預(yù)測的最佳預(yù)訓(xùn)練學(xué)習(xí)網(wǎng)絡(luò)模型尺度為618-481.有硅環(huán)境中不同Zn濃度預(yù)測的最佳預(yù)訓(xùn)練學(xué)習(xí)網(wǎng)絡(luò)模型尺度為618-531.則T-SAE模型的初始遷移網(wǎng)絡(luò)模型尺度為1236-1012.基于T-SAE提取的深度特征的SVR模型結(jié)果如表1所示。由表1可知,對于無硅環(huán)境和有硅環(huán)境中的油菜葉片樣本,所建立的SNV-T-SAE-SVR模型對Zn含量預(yù)測性能最佳,預(yù)測集的Rp2、RMSEP和RPD分別為0.8810、0.02748 mg/kg和2.966.最佳模型尺度為1236-1012-812-571.從結(jié)果可以看出,深度遷移學(xué)習(xí)模型能顯著提高有硅環(huán)境和無硅環(huán)境中油菜葉片Zn含量的檢測,這一研究結(jié)果與深度遷移學(xué)習(xí)模型在油菜植株中重金屬鎘含量檢測和硅作用下油菜葉片Pb含量檢測中應(yīng)用的結(jié)果相一致。深度遷移學(xué)習(xí)算法能夠共享源域(單一無硅環(huán)境或有硅環(huán)境下重金屬Zn檢測的深度學(xué)習(xí)SAE模型)淺層特征,在有監(jiān)督學(xué)習(xí)方式下對深層網(wǎng)絡(luò)參數(shù)進行微調(diào),搭建基于深度學(xué)習(xí)和遷移學(xué)習(xí)的目標(biāo)域(有硅和無硅環(huán)境中重金屬Zn檢測)學(xué)習(xí)框架,提高硅作用下油菜葉片重金屬Zn檢測模型的精度和泛化能力。

表1基于T-SAE提取的深度特征的SVR模型結(jié)果

wKgZPGe8Q-iAesRQAAArmDjaKQk57.jpeg

03實驗結(jié)論

在本研究中,深度遷移學(xué)習(xí)算法遷移堆疊自編碼器T-SAE結(jié)合Vis-NIR高光譜成像技術(shù)成功地實現(xiàn)了無硅環(huán)境和有硅環(huán)境中油菜葉片鋅含量的較高精度檢測,所建立的支持向量機回歸SVR模型對無硅環(huán)境和有硅環(huán)境中的油菜葉片Zn含量預(yù)測性能較佳,該模型預(yù)測集的決定系數(shù)Rp2和均方根誤差RMSEP分別為0.8394和0.03635 mg/kg。本文所采用的深度遷移學(xué)習(xí)模型為無硅環(huán)境和有硅環(huán)境中油菜葉片鋅含量無損檢測提供了新思路,為更好地監(jiān)測農(nóng)作物逆境脅迫和修復(fù)農(nóng)業(yè)土壤重金屬提供了強有力的技術(shù)支持。

推薦:

便攜式高光譜成像系統(tǒng)iSpecHyper-VS1000

專門用于公安刑偵、物證鑒定、醫(yī)學(xué)醫(yī)療、精準(zhǔn)農(nóng)業(yè)、礦物地質(zhì)勘探等領(lǐng)域的最新產(chǎn)品,主要優(yōu)勢具有體積小、幀率高、高光譜分辨率高、高像質(zhì)等性價比特點采用了透射光柵內(nèi)推掃原理高光譜成像,系統(tǒng)集成高性能數(shù)據(jù)采集與分析處理系統(tǒng),高速USB3.0接口傳輸,全靶面高成像質(zhì)量光學(xué)設(shè)計,物鏡接口為標(biāo)準(zhǔn)C-Mount,可根據(jù)用戶需求更換物鏡。

wKgZO2e8Q-mAc_XGAABNPFVFG4E35.jpeg

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 高光譜
    +關(guān)注

    關(guān)注

    0

    文章

    455

    瀏覽量

    10591
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    光譜成像在作物病蟲害監(jiān)測的研究進展

    光譜成像技術(shù)(Hyperspectral Imaging, HSI)是一種將光學(xué)成像與光譜分析相結(jié)合的多維信息獲取技術(shù),其核心在于通過連續(xù)窄波段(通常 光譜
    的頭像 發(fā)表于 10-16 15:53 ?165次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>光譜</b>成像在作物病蟲害監(jiān)測的研究進展

    光譜光譜工業(yè)相機的區(qū)別

    光譜相機可應(yīng)用于自動化檢測、質(zhì)量管理、回收分類、醫(yī)療診斷等多個領(lǐng)域
    的頭像 發(fā)表于 08-08 16:28 ?651次閱讀
    多<b class='flag-5'>光譜</b>與<b class='flag-5'>高</b><b class='flag-5'>光譜</b>工業(yè)相機的區(qū)別

    光譜相機讓農(nóng)林管理進入“光譜級”智能時代

    什么是光譜相機? 光譜相機是一種能夠捕捉物體在數(shù)十甚至上百個連續(xù)窄波段上反射光譜的成像設(shè)備。與普通可見光相機不同,它能“看到”人眼不可見
    的頭像 發(fā)表于 06-27 10:50 ?285次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>光譜</b>相機讓農(nóng)林管理進入“<b class='flag-5'>光譜</b>級”智能時代

    光譜成像相機:基于光譜成像技術(shù)的玉米種子純度檢測研究

    無損檢測領(lǐng)域的研究熱點。中達瑞和作為國內(nèi)光譜成像設(shè)備的領(lǐng)先供應(yīng)商,可實現(xiàn)國產(chǎn)替代,助力科研院校進行光譜成像領(lǐng)域的研究和探索。本研究基于
    的頭像 發(fā)表于 05-29 16:49 ?344次閱讀

    光譜相機在工業(yè)檢測中的應(yīng)用:LED屏檢、PCB板缺陷檢測

    隨著工業(yè)檢測精度要求的不斷提升,傳統(tǒng)機器視覺技術(shù)逐漸暴露出對非可見光物質(zhì)特性識別不足、復(fù)雜缺陷檢出率低等局限性。光譜相機憑借其獨特的光譜分析能力,為工業(yè)
    的頭像 發(fā)表于 04-23 16:36 ?586次閱讀

    光譜相機:溫室盆栽高通量植物表型光譜成像研究

    傳統(tǒng)植物表型測量依賴人工觀察與手工記錄,存在效率低、主觀性強、無法獲取多維數(shù)據(jù)(如生化成分、三維形態(tài))等缺陷。例如,葉片含量需破壞性取樣檢測,根系表型需挖掘植株,導(dǎo)致數(shù)據(jù)不連續(xù)且難以規(guī)?;?。此外
    的頭像 發(fā)表于 04-14 17:34 ?477次閱讀

    無人機光譜測量系統(tǒng)在水質(zhì)檢測中的應(yīng)用

    隨著生態(tài)環(huán)境保護意識的增強,水質(zhì)監(jiān)測的重要性日益凸顯。傳統(tǒng)的水質(zhì)檢測方法大多依賴人工采樣和實驗室分析,雖然精度,但耗時、耗力,且難以實現(xiàn)大范圍實時監(jiān)控。而無人機搭載光譜測量系統(tǒng)的出
    的頭像 發(fā)表于 04-09 17:38 ?730次閱讀
    無人機<b class='flag-5'>高</b><b class='flag-5'>光譜</b>測量系統(tǒng)在水質(zhì)<b class='flag-5'>檢測</b>中的應(yīng)用

    如何利用光譜相機實現(xiàn)精確的光譜分析?

    光譜相機是一種能夠獲取物體在連續(xù)多個窄波段上反射或輻射信息的先進成像設(shè)備。與普通RGB相機僅記錄紅、綠、藍(lán)三個寬波段不同,光譜相機可以捕獲數(shù)百個連續(xù)的窄波段,形成所謂的"
    的頭像 發(fā)表于 03-28 17:05 ?669次閱讀
    如何利用<b class='flag-5'>高</b><b class='flag-5'>光譜</b>相機實現(xiàn)精確的<b class='flag-5'>光譜</b>分析?

    基于光譜特征參數(shù)的馬鈴薯塊莖形成期葉片含水量定量監(jiān)測模型

    采用光譜數(shù)據(jù)選擇的特征光譜參數(shù)對馬鈴薯關(guān)鍵生育期葉片含水量的定量監(jiān)測普適性更高。研究結(jié)果可以實時、準(zhǔn)確地監(jiān)測馬鈴薯
    的頭像 發(fā)表于 03-24 18:03 ?379次閱讀
    基于<b class='flag-5'>高</b><b class='flag-5'>光譜</b><b class='flag-5'>特征</b>參數(shù)的馬鈴薯塊莖形成期<b class='flag-5'>葉片</b>含水量定量監(jiān)測模型

    光譜相機+LED光源系統(tǒng)助力材料分類和異物檢測、實現(xiàn)高速在線檢測

    波長的光源和光譜相機或類似設(shè)備。近年來,各領(lǐng)域利用光譜成像技術(shù)進行檢測的市場規(guī)模不斷擴大,對
    的頭像 發(fā)表于 03-21 17:02 ?700次閱讀
    <b class='flag-5'>高</b><b class='flag-5'>光譜</b>相機+LED光源系統(tǒng)助力材料分類和異物<b class='flag-5'>檢測</b>、實現(xiàn)高速在線<b class='flag-5'>檢測</b>

    揭秘深層的華美:用于藝術(shù)品與考古檢測光譜技術(shù)

    歷經(jīng)歲月的文物與藝術(shù)品的避免不了失真的遺憾,而光譜技術(shù)恰巧能夠揭示表象下的深層信息。友思特新品 MUSES 9系列光譜相機,其高空間分辨率與超寬光譜范圍的優(yōu)勢
    的頭像 發(fā)表于 02-06 14:22 ?721次閱讀
    揭秘深層的華美:用于藝術(shù)品與考古<b class='flag-5'>檢測</b>的<b class='flag-5'>高</b><b class='flag-5'>光譜</b>技術(shù)

    如何利用地物光譜進行空氣質(zhì)量監(jiān)測?

    地物光譜遙感技術(shù)在環(huán)境監(jiān)測領(lǐng)域展現(xiàn)出強大的應(yīng)用潛力。借助光譜數(shù)據(jù),可以實現(xiàn)對空氣質(zhì)量的全面監(jiān)測,提供準(zhǔn)確、實時的信息支持。以下是利用地物
    的頭像 發(fā)表于 01-03 10:37 ?502次閱讀
    如何利用地物<b class='flag-5'>高</b><b class='flag-5'>光譜</b>進行空氣質(zhì)量監(jiān)測?

    基于光譜的辣椒葉片SPAD反演研究

    無人機光譜遙感技術(shù)和近地光譜技術(shù)在農(nóng)作物的生長狀態(tài)監(jiān)測、分類等方面具有獨特的優(yōu)勢,它快速、高效、便捷、監(jiān)測范圍廣,可對植被進行連續(xù)動態(tài)監(jiān)測,在快速獲取大量植被表型信息的研究中有很好
    的頭像 發(fā)表于 12-31 10:28 ?1440次閱讀
    基于<b class='flag-5'>高</b><b class='flag-5'>光譜</b>的辣椒<b class='flag-5'>葉片</b>SPAD反演研究

    動態(tài)捕捉:光譜相機用于移動產(chǎn)線上的食品檢測

    光譜成像技術(shù)能夠為食品安全助力。以友思特BlackIndustry SWIR 1.7 Max 為代表的光譜相機,完美解決了移動產(chǎn)線檢測
    的頭像 發(fā)表于 11-08 15:51 ?870次閱讀
    動態(tài)捕捉:<b class='flag-5'>高</b><b class='flag-5'>光譜</b>相機用于移動產(chǎn)線上的食品<b class='flag-5'>檢測</b>

    深度解析LIBS光譜

    并形成等離子體,這些等離子體中的激發(fā)態(tài)原子和離子會輻射出特征光譜線。通過對這些光譜線的分析,就可以確定樣品的元素組成及含量。
    的頭像 發(fā)表于 10-24 19:40 ?1799次閱讀
    <b class='flag-5'>深度</b>解析LIBS<b class='flag-5'>光譜</b>儀