ARM 架構(gòu)與 RISC-V 架構(gòu)的 MCU 在同一性能水平下的運(yùn)行速度對(duì)比,需從架構(gòu)設(shè)計(jì)原點(diǎn)、指令集特性及實(shí)際測(cè)試數(shù)據(jù)展開(kāi)剖析。以 ARM Cortex-M33 這類(lèi) ARMv8M 架構(gòu)核心與采用 32 位整數(shù)指令集的 RISC-V MCU 為例,二者均基于 3 段或 5 段流水線設(shè)計(jì),在基礎(chǔ)整數(shù)運(yùn)算場(chǎng)景中呈現(xiàn)出微妙的性能博弈。
從嵌入式領(lǐng)域廣泛采用的 Coremark 基準(zhǔn)測(cè)試來(lái)看,Cortex-M33 依托成熟的 Thumb-2 指令集優(yōu)化,在典型配置下可實(shí)現(xiàn)約 4.02 coremark/MHz 的分?jǐn)?shù) —— 這得益于 ARM 在嵌入式指令集領(lǐng)域數(shù)十年的打磨,尤其是分支預(yù)測(cè)單元與流水線協(xié)同機(jī)制的高度成熟。而同等工藝節(jié)點(diǎn)下的 RISC-V MCU,如樹(shù)莓派 Pico2 中搭載的 Hazard3 核心(僅支持基本整數(shù)指令集),其 Coremark 分?jǐn)?shù)為 3.81 coremark/MHz—— 這種細(xì)微差距雖反映出 ARM 生態(tài)的優(yōu)化積累,但 RISC-V 精簡(jiǎn)的指令譯碼邏輯在處理緊湊循環(huán)代碼時(shí),能有效減少流水線氣泡,使指令吞吐量與 ARM 核心保持在相近水平。
當(dāng)任務(wù)涉及浮點(diǎn)運(yùn)算或 DSP 操作時(shí),架構(gòu)差異帶來(lái)的性能分化更為明顯。Cortex-M33 內(nèi)置的 FPU 單元依托 ARMv8M 架構(gòu)的原生指令支持,在單精度浮點(diǎn)運(yùn)算中具備硬件加速優(yōu)勢(shì);而 RISC-V 架構(gòu)需通過(guò)擴(kuò)展 F/P 指令集(如 F 擴(kuò)展草案)實(shí)現(xiàn)類(lèi)似功能,部分未集成浮點(diǎn)單元的 RISC-V MCU 在處理此類(lèi)任務(wù)時(shí)需依賴(lài)軟件模擬,性能表現(xiàn)會(huì)出現(xiàn)顯著差距。不過(guò)在純整數(shù)運(yùn)算場(chǎng)景中,RISC-V 因指令集的簡(jiǎn)潔性,寄存器堆與譯碼單元面積更小,在相同工藝下往往能實(shí)現(xiàn)更高主頻 —— 例如 32nm 工藝節(jié)點(diǎn)下,同定位的 RISC-V 核心最高頻率通常比 Cortex-M33 高出 5%-10%,一定程度上彌補(bǔ)了基準(zhǔn)測(cè)試中的分?jǐn)?shù)差距。
實(shí)際應(yīng)用中的運(yùn)行速度還受外圍系統(tǒng)設(shè)計(jì)影響。兩者連接相同內(nèi)存總線時(shí),總線架構(gòu)、緩存策略及內(nèi)存訪問(wèn)延遲對(duì)性能的影響會(huì)稀釋核心本身的差異。以樹(shù)莓派 Pico2 為例,盡管 Cortex-M33 與 Hazard3 核心共享相同外設(shè)與內(nèi)存系統(tǒng),但 Cortex-M33 憑借更優(yōu)的代碼密度(Thumb 指令集的壓縮特性),在緩存命中率上具備優(yōu)勢(shì),間接提升了實(shí)際代碼執(zhí)行效率。而 RISC-V 的模塊化設(shè)計(jì)允許開(kāi)發(fā)者根據(jù)場(chǎng)景定制流水線深度與預(yù)取策略,部分定制化核心在特定算法中可通過(guò)動(dòng)態(tài)分支預(yù)測(cè)技術(shù),實(shí)現(xiàn)比同頻 ARM 核心高 5%-8% 的性能突破 —— 這種靈活性正是開(kāi)源架構(gòu)的獨(dú)特優(yōu)勢(shì)。
從工藝適配性來(lái)看,32nm 節(jié)點(diǎn)下的 Cortex-M33 與 RV32IMC 核心(支持整數(shù)、乘法、壓縮指令)在典型嵌入式固件中的平均 CPI(每條指令周期數(shù))分別為 1.6-1.8 與 1.7-1.9,顯示出架構(gòu)層面的性能趨同性。隨著 RISC-V 生態(tài)對(duì) DSP 擴(kuò)展(P 擴(kuò)展)和更復(fù)雜分支預(yù)測(cè)算法的支持逐步完善,這種差距有望進(jìn)一步縮??;而 ARM 陣營(yíng)則通過(guò)動(dòng)態(tài)指令集切換技術(shù)持續(xù)優(yōu)化代碼密度,在存儲(chǔ)帶寬受限的場(chǎng)景中維持著隱性優(yōu)勢(shì)。
綜合而言,同一水平的 RISC-V 與 ARM 架構(gòu) MCU 在運(yùn)行速度上呈現(xiàn) “各有勝負(fù)” 的局面:ARM 憑借生態(tài)成熟度在通用場(chǎng)景中略占先機(jī),RISC-V 則通過(guò)架構(gòu)靈活性在特定任務(wù)中展現(xiàn)潛力。這種性能對(duì)比并非簡(jiǎn)單的數(shù)值比拼,而是指令集設(shè)計(jì)、微架構(gòu)優(yōu)化、外圍協(xié)同乃至生態(tài)適配的綜合體現(xiàn)。隨著兩者在能效比、可擴(kuò)展性等維度的持續(xù)迭代,運(yùn)行速度指標(biāo)正逐漸融入體系架構(gòu)的整體競(jìng)爭(zhēng)力評(píng)估,而不再是單一的決定性因素。
-
mcu
+關(guān)注
關(guān)注
147文章
18408瀏覽量
380020 -
ARM
+關(guān)注
關(guān)注
135文章
9462瀏覽量
386437 -
RISC-V
+關(guān)注
關(guān)注
47文章
2701瀏覽量
51094
發(fā)布評(píng)論請(qǐng)先 登錄
評(píng)論