資料介紹
In the 1980s and early 1990s, a great deal of research effort (both industrial
and academic) was expended on the design and implementation of hardware
neurocomputers [5, 6, 7, 8]. But, on the whole, most efforts may be judged
to have been unsuccessful: at no time have have hardware neurocomputers
been in wide use; indeed, the entire field was largely moribund by the end the
1990s. This lack of success may be largely attributed to the fact that earlier
work was almost entirely based on ASIC technology but was never sufficiently
developed or competetive enough to justify large-scale adoption; gate-arrays
of the period mentioned were never large enough nor fast enough for serious
neural-network applications.1 Nevertheless, the current literature shows that
ASIC neurocomputers appear to be making some sort of a comeback [1, 2, 3];
we shall argue below that these efforts are destined to fail for exactly the same
reasons that earlier ones did. On the other hand, the capacity and performance
of current FPGAs are such that they present a much more realistic alternative.
We shall in what follows give more detailed arguments to support these claims.
The chapter is organized as follows. Section 2 is a review of the fundamentals
of neural networks; still, it is expected that most readers of the book will already be familiar with these. Section 3 briefly contrasts ASIC-neurocomputers
with FPGA-neurocomputers, with the aim of presenting a clear case for the
former; a more significant aspects of this argument will be found in [18]. One
of the most repeated arguments for implementing neural networks in hardware
is the parallelism that the underlying models possess. Section 4 is a short section
that reviews this. In Section 5 we briefly describe the realization of a
state-of-the art FPGA device. The objective there is to be able to put into a
concrete context certain following discussions and to be able to give grounded
discussions of what can or cannot be achieved with current FPGAs. Section
6 deals with certain aspects of computer arithmetic that are relevant to neuralnetwork implementations. Much of this is straightforward, and our main aim
is to highlight certain subtle aspects. Section 7 nominally deals with activation
functions, but is actually mostly devoted to the sigmoid function. There
are two main reasons for this choice: first, the chapter contains a significant
contribution to the implementation of elementary or near-elementary activation
functions, the nature of which contribution is not limited to the sigmoid
function; second, the sigmoid function is the most important activation function
for neural networks. In Section 8, we very briefly address an important
issue — performance evaluation. Our goal here is simple and can be stated
quite succintly: as far as performance-evaluation goes, neurocomputer architecture
continues to languish in the “Dark Ages", and this needs to change. A
final section summarises the main points made in chapter and also serves as a
brief introduction to subsequent chapters in the book.

- 基于FPGA的RBF神經(jīng)網(wǎng)絡(luò)的硬件實現(xiàn)
- 人工神經(jīng)網(wǎng)絡(luò)的原理及仿真實例 0次下載
- 基于FPGA的神經(jīng)網(wǎng)絡(luò)硬件實現(xiàn)方法 37次下載
- 基于進化計算的神經(jīng)網(wǎng)絡(luò)設(shè)計與實現(xiàn) 4次下載
- 基于FPGA的SIMD卷積神經(jīng)網(wǎng)絡(luò)加速器 24次下載
- 人工神經(jīng)網(wǎng)絡(luò)控制 13次下載
- 人工智能-BP神經(jīng)網(wǎng)絡(luò)算法的簡單實現(xiàn) 12次下載
- 基于FPGA的RBF神經(jīng)網(wǎng)絡(luò)硬件實現(xiàn) 26次下載
- MATLAB實現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN的源代碼 16次下載
- 神經(jīng)網(wǎng)絡(luò)圖像壓縮算法的FPGA實現(xiàn)技術(shù)研究論文免費下載 11次下載
- 基于FPGA集群的NEST脈沖神經(jīng)網(wǎng)絡(luò)仿真器 11次下載
- 如何使用FPGA實現(xiàn)BP神經(jīng)網(wǎng)絡(luò)的仿真線設(shè)計 14次下載
- 如何使用FPGA實現(xiàn)神經(jīng)網(wǎng)絡(luò)硬件的設(shè)計方法 6次下載
- 神經(jīng)網(wǎng)絡(luò)與神經(jīng)網(wǎng)絡(luò)控制的學(xué)習(xí)課件免費下載 7次下載
- 神經(jīng)網(wǎng)絡(luò)圖像壓縮算法的FPGA實現(xiàn)技術(shù)研究 19次下載
- 基于FPGA的脈沖神經(jīng)網(wǎng)絡(luò)模型應(yīng)用探索 637次閱讀
- 遞歸神經(jīng)網(wǎng)絡(luò)的實現(xiàn)方法 358次閱讀
- BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系 1677次閱讀
- BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別 1223次閱讀
- 基于MATLAB的BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)方式 607次閱讀
- 全連接前饋神經(jīng)網(wǎng)絡(luò)與前饋神經(jīng)網(wǎng)絡(luò)的比較 9632次閱讀
- 深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別 1006次閱讀
- 卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別 3581次閱讀
- 神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些 813次閱讀
- 如何使用Numpy搭建神經(jīng)網(wǎng)絡(luò) 3615次閱讀
- 一種基于FPGA的神經(jīng)網(wǎng)絡(luò)硬件實現(xiàn)方案詳解 1.3w次閱讀
- BP神經(jīng)網(wǎng)絡(luò)概述 4.4w次閱讀
- 基于Numpy實現(xiàn)神經(jīng)網(wǎng)絡(luò):如何加入和調(diào)整dropout? 7646次閱讀
- 基于Numpy實現(xiàn)同態(tài)加密神經(jīng)網(wǎng)絡(luò) 7981次閱讀
- 基于FPGA的神經(jīng)網(wǎng)絡(luò)算法的設(shè)計 5650次閱讀
下載排行
本周
- 1RK3588數(shù)據(jù)手冊
- 2.24 MB | 7次下載 | 免費
- 2臺達變頻器VFD-M使用手冊
- 2.51 MB | 2次下載 | 免費
- 3DAP03變頻器使用手冊
- 5.72 MB | 2次下載 | 免費
- 4PC0310 高亮度恒流LED驅(qū)動控制電路數(shù)據(jù)手冊
- 0.54 MB | 1次下載 | 免費
- 5SAJ8000變頻器使用手冊
- 1.37 MB | 1次下載 | 免費
- 6HSJ08 電機驅(qū)動芯片數(shù)據(jù)手冊
- 1.00 MB | 次下載 | 免費
- 7超大量程數(shù)字電容表BK-820電路原理圖資料
- 0.14 MB | 次下載 | 10 積分
- 8ZYNQ UltraScalePlus RFSOC QSPI Flash固化常見問題說明
- 1.31 MB | 次下載 | 免費
本月
- 1常用電子元器件集錦
- 1.72 MB | 24500次下載 | 免費
- 2如何看懂電子電路圖
- 12.88 MB | 137次下載 | 免費
- 3PC2456高壓浪涌抑制器控制器數(shù)據(jù)手冊
- 3.03 MB | 14次下載 | 免費
- 4ssd1306單片 CMOS OLED/PLED 驅(qū)動芯片中文手冊
- 1.66 MB | 11次下載 | 1 積分
- 5PC5502負載均流控制電路數(shù)據(jù)手冊
- 1.63 MB | 11次下載 | 免費
- 6PC2464具理想二極管的浪涌抑制控制器數(shù)據(jù)手冊
- 4.42 MB | 9次下載 | 免費
- 7PC2466高電壓浪涌抑制器數(shù)據(jù)手冊
- 3.37 MB | 8次下載 | 免費
- 8ESP32開發(fā)板元件資料
- 0.03 MB | 7次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935132次下載 | 10 積分
- 2開源硬件-PMP21529.1-4 開關(guān)降壓/升壓雙向直流/直流轉(zhuǎn)換器 PCB layout 設(shè)計
- 1.48MB | 420064次下載 | 10 積分
- 3Altium DXP2002下載入口
- 未知 | 233089次下載 | 10 積分
- 4電路仿真軟件multisim 10.0免費下載
- 340992 | 191409次下載 | 10 積分
- 5十天學(xué)會AVR單片機與C語言視頻教程 下載
- 158M | 183345次下載 | 10 積分
- 6labview8.5下載
- 未知 | 81593次下載 | 10 積分
- 7Keil工具MDK-Arm免費下載
- 0.02 MB | 73818次下載 | 10 積分
- 8LabVIEW 8.6下載
- 未知 | 65990次下載 | 10 積分
電子發(fā)燒友App






創(chuàng)作
發(fā)文章
發(fā)帖
提問
發(fā)資料
發(fā)視頻
上傳資料賺積分
評論