18video性欧美19sex,欧美高清videosddfsexhd,性少妇videosexfreexxx片中国,激情五月激情综合五月看花,亚洲人成网77777色在线播放

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示
創(chuàng)作
電子發(fā)燒友網(wǎng)>電子資料下載>電子資料>PyTorch教程5.2之多層感知器的實現(xiàn)

PyTorch教程5.2之多層感知器的實現(xiàn)

2023-06-05 | pdf | 0.29 MB | 次下載 | 免費

資料介紹

多層感知器 (MLP) 的實現(xiàn)并不比簡單的線性模型復(fù)雜多少。關(guān)鍵的概念差異是我們現(xiàn)在連接多個層。

import torch
from torch import nn
from d2l import torch as d2l
from mxnet import np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()
import jax
from flax import linen as nn
from jax import numpy as jnp
from d2l import jax as d2l
No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)
import tensorflow as tf
from d2l import tensorflow as d2l

5.2.1. 從零開始實施

讓我們從頭開始實現(xiàn)這樣一個網(wǎng)絡(luò)。

5.2.1.1. 初始化模型參數(shù)

回想一下,F(xiàn)ashion-MNIST 包含 10 個類,并且每個圖像由一個28×28=784灰度像素值網(wǎng)格。和以前一樣,我們暫時忽略像素之間的空間結(jié)構(gòu),因此我們可以將其視為具有 784 個輸入特征和 10 個類別的分類數(shù)據(jù)集。首先,我們將實現(xiàn)一個具有一個隱藏層和 256 個隱藏單元的 MLP。層數(shù)和寬度都是可調(diào)的(它們被認(rèn)為是超參數(shù))。通常,我們選擇層寬度可以被 2 的較大次冪整除。由于內(nèi)存在硬件中分配和尋址的方式,這在計算上是高效的。

同樣,我們將用幾個張量表示我們的參數(shù)。請注意, 對于每一層,我們必須跟蹤一個權(quán)重矩陣和一個偏置向量。與往常一樣,我們?yōu)檫@些參數(shù)的損失梯度分配內(nèi)存。

在下面的代碼中,我們使用 `nn.Parameter< https://pytorch.org/docs/stable/generated/torch.nn.parameter.Parameter.html >`__ 自動將類屬性注冊為要跟蹤的參數(shù)autograd第 2.5 節(jié)) .

class MLPScratch(d2l.Classifier):
  def __init__(self, num_inputs, num_outputs, num_hiddens, lr, sigma=0.01):
    super().__init__()
    self.save_hyperparameters()
    self.W1 = nn.Parameter(torch.randn(num_inputs, num_hiddens) * sigma)
    self.b1 = nn.Parameter(torch.zeros(num_hiddens))
    self.W2 = nn.Parameter(torch.randn(num_hiddens, num_outputs) * sigma)
    self.b2 = nn.Parameter(torch.zeros(num_outputs))

In the code below, we first define and initialize the parameters and then enable gradient tracking.

class MLPScratch(d2l.Classifier):
  def __init__(self, num_inputs, num_outputs, num_hiddens, lr, sigma=0.01):
    super().__init__()
    self.save_hyperparameters()
    self.W1 = np.random.randn(num_inputs, num_hiddens) * sigma
    self.b1 = np.zeros(num_hiddens)
    self.W2 = np.random.randn(num_hiddens, num_outputs) * sigma
    self.b2 = np.zeros(num_outputs)
    for param in self.get_scratch_params():
      param.attach_grad()

In the code below we use `flax.linen.Module.param <https://flax.readthedocs.io/en/latest/api_reference/flax.linen.html#flax.linen.Module.param>`__ to define the model parameter.

class MLPScratch(d2l.Classifier):
  num_inputs: int
  num_outputs: int
  num_hiddens: int
  lr: float
  sigma: float = 0.01

  def setup(self):
    self.W1 = self.param('W1', nn.initializers.normal(self.sigma),
               (self.num_inputs, self.num_hiddens))
    self.b1 = self.param('b1', nn.initializers.zeros, self.num_hiddens)
    self.W2 = self.param('W2', nn.initializers.normal(self.sigma),
               (self.num_hiddens, self.num_outputs))
    self.b2 = self.param('b2', nn.initializers.zeros, self.num_outputs)

In the code below we use `tf.Variable <https://www.tensorflow.org/api_docs/python/tf/Variable>`__ to define the model parameter.

class MLPScratch(d2l.Classifier):
  def __init__(self, num_inputs, num_outputs, num_hiddens, lr, sigma=0.01):
    super().__init__()
    self.save_hyperparameters()
    self.W1 = tf.Variable(
      tf.random.normal((num_inputs, num_hiddens)) * sigma)
    self.b1 = tf.Variable(tf.zeros(num_hiddens))
    self.W2 = tf.Variable(
      tf.random.normal((num_hiddens, num_outputs)) * sigma)
    self.b2 = tf.Variable(tf.zeros(num_outputs))

5.2.1.2. 模型

為了確保我們知道一切是如何工作的,我們將自己實現(xiàn) ReLU 激活,而不是直接調(diào)用內(nèi)置relu函數(shù)。

def relu(X):
  a = torch.zeros_like(X)
  return torch.max(X, a)
def relu(X):
  return np.maximum(X, 0)
def relu(X):
  return jnp.maximum(X, 0)
def relu(X):
  return tf.math.maximum(X, 0)

由于我們忽略了空間結(jié)構(gòu),我們將reshape每個二維圖像轉(zhuǎn)換為長度為 的平面向量num_inputs。最后,我們只用幾行代碼就實現(xiàn)了我們的模型。由于我們使用框架內(nèi)置的 autograd,這就是它所需要的全部。

@d2l.add_to_class(MLPScratch)
def forward(self, X):
  X = X.reshape((-1, self.num_inputs))
  H = relu(torch.matmul(X, self.W1) + self.b1)
  return torch.matmul(H, self.W2) + self.b2
@d2l.add_to_class(MLPScratch)
def forward(self, X):
  X = X.reshape((-1, self.num_inputs))
  H = relu(np.dot(X, self.W1) + self.b1)
  return np.dot(H, self.W2) + self.b2
@d2l.add_to_class(MLPScratch)
def forward(self, X):
  X = X.reshape((-1, self.num_inputs))
  H = relu(jnp.matmul(X, self.W1) + self.b1)
  return jnp.matmul(H, self.W2) + self.b2
@d2l.add_to_class(MLPScratch)
def forward(self, X):
  X = tf.reshape(X, (-1, self.num_inputs))
  H = relu(tf.matmul(X, self.W1) + self.b1)
  return tf.matmul(H, self.W2) + self.b2

5.2.1.3. 訓(xùn)練

幸運的是,MLP 的訓(xùn)練循環(huán)與 softmax 回歸完全相同。我們定義模型、數(shù)據(jù)、訓(xùn)練器,最后fit在模型和數(shù)據(jù)上調(diào)用方法。


下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1NS1081/NS1081S/NS1081Q USB 3.0閃存數(shù)據(jù)手冊
  2. 0.40 MB   |  4次下載  |  2 積分
  3. 2光伏并網(wǎng)逆變器原理
  4. 7.31 MB   |  3次下載  |  2 積分
  5. 3T20電烙鐵原理圖資料
  6. 0.27 MB   |  2次下載  |  免費
  7. 4PL83081 雙路恒流同步降壓轉(zhuǎn)換器技術(shù)手冊
  8. 3.34 MB   |  1次下載  |  免費
  9. 5PL88052 4.8V至60V輸入,5A,同步降壓轉(zhuǎn)換器技術(shù)手冊
  10. 3.36 MB   |  1次下載  |  免費
  11. 6LX8201微孔霧化驅(qū)動芯片電路圖資料
  12. 0.15 MB   |  1次下載  |  免費
  13. 7PC6200_7V直流電機驅(qū)動器技術(shù)手冊
  14. 0.47 MB   |  次下載  |  免費
  15. 8恒溫晶體振蕩器(OCXO)FOC-2D:20.6×20.6mm在通信基站和測試設(shè)備中的應(yīng)用參數(shù)規(guī)格
  16. 485.75 KB  |  次下載  |  免費

本月

  1. 1如何看懂電子電路圖
  2. 12.88 MB   |  329次下載  |  免費
  3. 2RK3588數(shù)據(jù)手冊
  4. 2.24 MB   |  14次下載  |  免費
  5. 3PC5502負(fù)載均流控制電路數(shù)據(jù)手冊
  6. 1.63 MB   |  12次下載  |  免費
  7. 4STM32F10x參考手冊資料
  8. 13.64 MB   |  12次下載  |  1 積分
  9. 5OAH0428 V1.0英文規(guī)格書
  10. 5.86 MB   |  8次下載  |  免費
  11. 6NS1081/NS1081S/NS1081Q USB 3.0閃存數(shù)據(jù)手冊
  12. 0.40 MB   |  4次下載  |  2 積分
  13. 7PID控制算法學(xué)習(xí)筆記資料
  14. 3.43 MB   |  3次下載  |  2 積分
  15. 8光伏并網(wǎng)逆變器原理
  16. 7.31 MB   |  3次下載  |  2 積分

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935132次下載  |  10 積分
  3. 2開源硬件-PMP21529.1-4 開關(guān)降壓/升壓雙向直流/直流轉(zhuǎn)換器 PCB layout 設(shè)計
  4. 1.48MB  |  420064次下載  |  10 積分
  5. 3Altium DXP2002下載入口
  6. 未知  |  233089次下載  |  10 積分
  7. 4電路仿真軟件multisim 10.0免費下載
  8. 340992  |  191415次下載  |  10 積分
  9. 5十天學(xué)會AVR單片機與C語言視頻教程 下載
  10. 158M  |  183349次下載  |  10 積分
  11. 6labview8.5下載
  12. 未知  |  81599次下載  |  10 積分
  13. 7Keil工具M(jìn)DK-Arm免費下載
  14. 0.02 MB  |  73818次下載  |  10 積分
  15. 8LabVIEW 8.6下載
  16. 未知  |  65990次下載  |  10 積分