18video性欧美19sex,欧美高清videosddfsexhd,性少妇videosexfreexxx片中国,激情五月激情综合五月看花,亚洲人成网77777色在线播放

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度學(xué)習(xí)框架pytorch介紹

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-17 16:10 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

深度學(xué)習(xí)框架pytorch介紹

PyTorch是由Facebook創(chuàng)建的開源機(jī)器學(xué)習(xí)框架,其中TensorFlow是完全基于數(shù)據(jù)流圖的。它是一個使用動態(tài)計(jì)算圖的框架,允許用戶更靈活地定義和修改模型。PyTorch具有易于使用的API和文檔,并強(qiáng)制執(zhí)行Python編碼標(biāo)準(zhǔn)。這使得它成為機(jī)器學(xué)習(xí)從業(yè)者的首選框架之一。PyTorch支持CPUGPU計(jì)算以及分布式訓(xùn)練模型。

PyTorch的核心是Tensor。張量是PyTorch中的數(shù)據(jù)結(jié)構(gòu),類似于NumPy數(shù)組。除了具有NumPy數(shù)組的所有功能之外,張量還具有GPU加速功能。這種加速將在預(yù)處理、訓(xùn)練和評估模型的過程中節(jié)省時間。張量的維數(shù)基于rank。標(biāo)量是rank 0張量,而向量是rank 1張量。PyTorch允許張量之間的數(shù)學(xué)運(yùn)算,例如加、減、乘和除。此外,PyTorch支持許多其他張量運(yùn)算,如矩陣乘法、向量點(diǎn)積等。

PyTorch的一個強(qiáng)大之處在于它提供動態(tài)計(jì)算圖的支持。這意味著,當(dāng)你構(gòu)建模型時,你可以不必事先確定計(jì)算圖的結(jié)構(gòu)。計(jì)算圖將隨著你的程序執(zhí)行而動態(tài)構(gòu)建。這使得模型開發(fā)者比較容易根據(jù)不同需求靈活修改模型。這種靈活性比靜態(tài)計(jì)算圖更具有可擴(kuò)展性。

PyTorch的另一個優(yōu)勢是通過PyTorch Lightning、FastAI等高級API擴(kuò)展框架功能。這些API是基于PyTorch創(chuàng)建的,使得構(gòu)建和訓(xùn)練特定類型的神經(jīng)網(wǎng)絡(luò)模型成為可能。這些API包含已經(jīng)被驗(yàn)證過的許多功能和模型結(jié)構(gòu)的現(xiàn)成實(shí)現(xiàn),可以幫助用戶節(jié)省時間并使模型的訓(xùn)練更有效。

PyTorch的另一個強(qiáng)大特性是支持自動微分。在機(jī)器學(xué)習(xí)中,微分是指執(zhí)行優(yōu)化算法來訓(xùn)練模型的關(guān)鍵步驟。PyTorch的自動微分讓開發(fā)者不必編寫微分代碼,它會自動完成。這大大簡化了代碼編寫,并促進(jìn)了模型的開發(fā)進(jìn)程。

PyTorch也支持GPU加速,這使得大規(guī)模的訓(xùn)練變得可能。GPU并行處理能夠大大加快模型的訓(xùn)練速度。PyTorch可以利用多個GPU的優(yōu)勢,使得在訓(xùn)練模型之前對數(shù)據(jù)進(jìn)行并行處理,從而減少數(shù)據(jù)預(yù)處理時間。

總之,PyTorch是一個優(yōu)秀的開源機(jī)器學(xué)習(xí)框架,它具有廣泛的兼容性和簡單易用的API。通過提供動態(tài)計(jì)算圖支持和自動微分功能,它讓機(jī)器學(xué)習(xí)從業(yè)者更加靈活和高效,從而提供了更好的學(xué)習(xí)和實(shí)踐機(jī)會。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5586

    瀏覽量

    123715
  • tensorflow
    +關(guān)注

    關(guān)注

    13

    文章

    330

    瀏覽量

    61714
  • pytorch
    +關(guān)注

    關(guān)注

    2

    文章

    812

    瀏覽量

    14502
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    嵌入式AI技術(shù)之深度學(xué)習(xí):數(shù)據(jù)樣本預(yù)處理過程中使用合適的特征變換對深度學(xué)習(xí)的意義

    ? 作者:蘇勇Andrew 使用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)機(jī)器學(xué)習(xí),網(wǎng)絡(luò)的每個層都將對輸入的數(shù)據(jù)做一次抽象,多層神經(jīng)網(wǎng)絡(luò)構(gòu)成深度學(xué)習(xí)框架,可以深度理解數(shù)
    的頭像 發(fā)表于 04-02 18:21 ?1180次閱讀

    軍事應(yīng)用中深度學(xué)習(xí)的挑戰(zhàn)與機(jī)遇

    ,并廣泛介紹深度學(xué)習(xí)在兩個主要軍事應(yīng)用領(lǐng)域的應(yīng)用:情報行動和自主平臺。最后,討論了相關(guān)的威脅、機(jī)遇、技術(shù)和實(shí)際困難。主要發(fā)現(xiàn)是,人工智能技術(shù)并非無所不能,需要謹(jǐn)慎應(yīng)用,同時考慮到其局限性、網(wǎng)絡(luò)安全威脅以及
    的頭像 發(fā)表于 02-14 11:15 ?723次閱讀

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)之間存在著密切的關(guān)系,以下是對它們之間關(guān)系的介紹: 一、BP神經(jīng)網(wǎng)絡(luò)的基本概念 BP神經(jīng)網(wǎng)絡(luò),即反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network
    的頭像 發(fā)表于 02-12 15:15 ?1195次閱讀

    【「具身智能機(jī)器人系統(tǒng)」閱讀體驗(yàn)】+兩本互為支持的書

    如何使用PyTorch進(jìn)行數(shù)字圖像處理,它借助攝像頭來獲取視頻的圖像信息,然后通過已有的圖像識別框架模型經(jīng)深度學(xué)習(xí)和優(yōu)化以達(dá)到更精準(zhǔn)的識別結(jié)果,從而為進(jìn)一步的執(zhí)行處理提供數(shù)據(jù)支持和依據(jù)
    發(fā)表于 01-01 15:50

    Triton編譯器在機(jī)器學(xué)習(xí)中的應(yīng)用

    多種深度學(xué)習(xí)框架,如TensorFlow、PyTorch、ONNX等,使得開發(fā)者能夠輕松地將不同框架下訓(xùn)練的模型部署到GPU上。 2. Tr
    的頭像 發(fā)表于 12-24 18:13 ?1434次閱讀

    利用Arm Kleidi技術(shù)實(shí)現(xiàn)PyTorch優(yōu)化

    PyTorch 是一個廣泛應(yīng)用的開源機(jī)器學(xué)習(xí) (ML) 庫。近年來,Arm 與合作伙伴通力協(xié)作,持續(xù)改進(jìn) PyTorch 的推理性能。本文將詳細(xì)介紹如何利用 Arm Kleidi 技術(shù)
    的頭像 發(fā)表于 12-23 09:19 ?1492次閱讀
    利用Arm Kleidi技術(shù)實(shí)現(xiàn)<b class='flag-5'>PyTorch</b>優(yōu)化

    Arm KleidiAI助力提升PyTorch上LLM推理性能

    熱門的深度學(xué)習(xí)框架尤為突出,許多企業(yè)均會選擇其作為開發(fā) AI 應(yīng)用的庫。通過部署 Arm Kleidi 技術(shù),Arm 正在努力優(yōu)化 PyTorch,以加速在基于 Arm 架構(gòu)的處理器上
    的頭像 發(fā)表于 12-03 17:05 ?1806次閱讀
    Arm KleidiAI助力提升<b class='flag-5'>PyTorch</b>上LLM推理性能

    PyTorch 2.5.1: Bugs修復(fù)版發(fā)布

    ? 一,前言 在深度學(xué)習(xí)框架的不斷迭代中,PyTorch 社區(qū)始終致力于提供更穩(wěn)定、更高效的工具。最近,PyTorch 2.5.1 版本正式
    的頭像 發(fā)表于 12-03 16:11 ?1864次閱讀
    <b class='flag-5'>PyTorch</b> 2.5.1: Bugs修復(fù)版發(fā)布

    NPU在深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為深度學(xué)習(xí)
    的頭像 發(fā)表于 11-14 15:17 ?2578次閱讀

    PyTorch GPU 加速訓(xùn)練模型方法

    深度學(xué)習(xí)領(lǐng)域,GPU加速訓(xùn)練模型已經(jīng)成為提高訓(xùn)練效率和縮短訓(xùn)練時間的重要手段。PyTorch作為一個流行的深度學(xué)習(xí)
    的頭像 發(fā)表于 11-05 17:43 ?1964次閱讀

    PyTorch 數(shù)據(jù)加載與處理方法

    PyTorch 是一個流行的開源機(jī)器學(xué)習(xí)庫,它提供了強(qiáng)大的工具來構(gòu)建和訓(xùn)練深度學(xué)習(xí)模型。在構(gòu)建模型之前,一個重要的步驟是加載和處理數(shù)據(jù)。 1. Py
    的頭像 發(fā)表于 11-05 17:37 ?1232次閱讀

    如何使用 PyTorch 進(jìn)行強(qiáng)化學(xué)習(xí)

    強(qiáng)化學(xué)習(xí)(Reinforcement Learning, RL)是一種機(jī)器學(xué)習(xí)方法,它通過與環(huán)境的交互來學(xué)習(xí)如何做出決策,以最大化累積獎勵。PyTorch 是一個流行的開源機(jī)器
    的頭像 發(fā)表于 11-05 17:34 ?1302次閱讀

    Pytorch深度學(xué)習(xí)訓(xùn)練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學(xué)習(xí)訓(xùn)練。
    的頭像 發(fā)表于 10-28 14:05 ?906次閱讀
    <b class='flag-5'>Pytorch</b><b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>訓(xùn)練的方法

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU在深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識別 圖像識別是深度學(xué)習(xí)
    的頭像 發(fā)表于 10-27 11:13 ?1954次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    AI大模型與深度學(xué)習(xí)之間存在著密不可分的關(guān)系,它們互為促進(jìn),相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學(xué)習(xí)是AI大模型的基礎(chǔ) 技術(shù)支撐 :
    的頭像 發(fā)表于 10-23 15:25 ?3407次閱讀