18video性欧美19sex,欧美高清videosddfsexhd,性少妇videosexfreexxx片中国,激情五月激情综合五月看花,亚洲人成网77777色在线播放

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡(luò)層級結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的卷積層講解

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:49 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

卷積神經(jīng)網(wǎng)絡(luò)層級結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的卷積層講解

卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學習的神經(jīng)網(wǎng)絡(luò)模型,在許多視覺相關(guān)的任務(wù)中表現(xiàn)出色,如圖像分類、目標檢測、人臉識別等。卷積神經(jīng)網(wǎng)絡(luò)的核心是卷積層和池化層,它們構(gòu)成了網(wǎng)絡(luò)的主干,實現(xiàn)了對圖像特征的提取和抽象。

一、卷積神經(jīng)網(wǎng)絡(luò)的層級結(jié)構(gòu)

卷積神經(jīng)網(wǎng)絡(luò)主要分為四個層級,分別是輸入層、卷積層、池化層和全連接層。

1. 輸入層

輸入層是卷積神經(jīng)網(wǎng)絡(luò)的第一層,接收原始圖像數(shù)據(jù)并將其用張量的形式傳入神經(jīng)網(wǎng)絡(luò)。通常情況下,輸入層的尺寸等于原始圖像的尺寸,顏色通道數(shù)為1或3。

2. 卷積層

卷積層是卷積神經(jīng)網(wǎng)絡(luò)中最關(guān)鍵的一層,它通過卷積運算來提取圖像的特征。卷積操作是通過卷積核(Filter)與輸入信號進行卷積運算而完成的,每個卷積核可以提取一種特定的特征。

在卷積層中,我們可以設(shè)置多組卷積核,每組卷積核可以提取不同的特征。每個卷積核的大小和步長可以根據(jù)實際需要進行調(diào)整,卷積操作通常采用“same”或“valid”兩種方式,其中“same”表示輸入和輸出的大小相同,“valid”表示輸出的大小比輸入小。

卷積層的輸出通過激活函數(shù)進行激活,常用的激活函數(shù)有ReLU、Sigmoid、Tanh等。

3. 池化層

池化層是卷積神經(jīng)網(wǎng)絡(luò)中的另一個重要層級,它的主要作用是對卷積層的輸出進行下采樣,從而減少參數(shù)數(shù)量,提高模型計算效率。池化層通常采用最大池化或平均池化操作。

最大池化是指從池化窗口中選擇最大值作為輸出,而平均池化是指從池化窗口中取平均值作為輸出。池化層通常不改變通道數(shù)量,但可以減少特征圖的尺寸,通常采用“same”或“valid”兩種方式。

4. 全連接層

全連接層是卷積神經(jīng)網(wǎng)絡(luò)中的最后一層,它的作用是將卷積層和池化層輸出的特征圖轉(zhuǎn)換為分類或回歸結(jié)果,通常使用Softmax或Sigmoid函數(shù)進行激活。

二、卷積神經(jīng)網(wǎng)絡(luò)的卷積層講解

卷積層是卷積神經(jīng)網(wǎng)絡(luò)中最重要的一層,它通過卷積運算來提取圖像的特征。在卷積層中,存在多個卷積核,每個卷積核可以提取不同的特征。

1. 卷積層的輸入輸出

卷積層的輸入是一個張量,通常是一個四維張量,其形狀為(batch_size, height, width, channels),其中batch_size表示訓練時每組輸入的數(shù)量,height和width表示輸入的圖像尺寸,channels表示輸入的通道數(shù)量。

卷積層的輸出也是一個張量,其形狀與輸入張量相似,但是通道數(shù)量可能不同。在卷積層中,經(jīng)過卷積操作后,圖像的尺寸可能會發(fā)生變化,通常通過填充(Padding)和步長(Stride)來調(diào)整輸出的尺寸。

2. 卷積核

卷積核是卷積層的核心,每個卷積核代表一個特定的特征提取器,可以提取圖像中某種局部特征。對于輸入的每個通道,都有一個對應(yīng)的卷積核。

卷積核通常是一個權(quán)重矩陣,其大小可以根據(jù)需要進行調(diào)整。在卷積操作中,卷積核以固定的步長在輸入張量上滑動,對輸入張量的某個局部區(qū)域進行卷積運算。

卷積核的值是隨機初始化的,隨著訓練的進行,卷積核的值逐漸調(diào)整,以使得卷積層的輸出更好地對應(yīng)輸入數(shù)據(jù)的特征。

3. 填充和步長

填充和步長是卷積操作中常用的調(diào)整參數(shù),它們可以控制輸出特征圖的尺寸。填充是在輸入張量的邊緣周圍添加額外的像素值,以保持輸出張量與輸入張量相同的尺寸。

填充可以有效地減少圖像邊緣的信息丟失,通常分為“same”和“valid”兩種方式。其中,“same”表示填充后的輸出特征圖與輸入張量的大小相同,“valid”表示不進行填充,輸出特征圖的尺寸將會使輸入尺寸減小。

步長是指卷積核在輸入張量上移動的步長,通常設(shè)定為一個大于1的整數(shù)。步長可以有效地控制輸出特征圖的尺寸,通常使用“same”或“valid”方式來調(diào)整輸出尺寸。

4. 激活函數(shù)

卷積神經(jīng)網(wǎng)絡(luò)中的卷積層通常使用激活函數(shù)來增加模型的非線性性。激活函數(shù)接收卷積層的輸出并進行激活,將非線性的輸入映射為非線性的輸出。

常用的激活函數(shù)有ReLU、Sigmoid、Tanh等。ReLU是指整流線性單元,其具有簡單快速、可微分等優(yōu)點,廣泛應(yīng)用于卷積神經(jīng)網(wǎng)絡(luò)中。Sigmoid和Tanh函數(shù)通常用于二分類問題和回歸問題。

總結(jié)

卷積神經(jīng)網(wǎng)絡(luò)是一種具有強大特征提取能力的神經(jīng)網(wǎng)絡(luò)模型。卷積層是卷積神經(jīng)網(wǎng)絡(luò)的核心組成部分,負責特征提取和表示。

在卷積層中,通過卷積核對輸入張量進行卷積運算,從而提取具有抽象義的特征,同時可以通過填充和步長等參數(shù)進行靈活調(diào)整。卷積層的輸出通常使用激活函數(shù)進行激活,并通過池化層轉(zhuǎn)化為更小的特征圖。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    CICC2033神經(jīng)網(wǎng)絡(luò)部署相關(guān)操作

    讀取。接下來需要使用擴展指令,完成神經(jīng)網(wǎng)絡(luò)的部署,此處僅對第一卷積+池化的部署進行說明,其余與之類似。 1.使用 Custom_Dtrans 指令,將權(quán)重數(shù)據(jù)、輸入數(shù)據(jù)導入硬件加
    發(fā)表于 10-20 08:00

    卷積神經(jīng)網(wǎng)絡(luò)如何監(jiān)測皮帶堵料情況 #人工智能

    卷積神經(jīng)網(wǎng)絡(luò)
    jf_60804796
    發(fā)布于 :2025年07月01日 17:08:42

    自動駕駛感知系統(tǒng)中卷積神經(jīng)網(wǎng)絡(luò)原理的疑點分析

    背景 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)的核心技術(shù)主要包括以下幾個方面:局部連接、權(quán)值共享、多卷積核以及池化。這些技術(shù)共同作用,使得CNN在圖像
    的頭像 發(fā)表于 04-07 09:15 ?532次閱讀
    自動駕駛感知系統(tǒng)中<b class='flag-5'>卷積</b><b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>原理的疑點分析

    BP神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計原則

    BP(back propagation)神經(jīng)網(wǎng)絡(luò)是一種按照誤差逆向傳播算法訓練的多層前饋神經(jīng)網(wǎng)絡(luò),其網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計原則主要基于以下幾個方面: 一、層次結(jié)構(gòu) 輸入
    的頭像 發(fā)表于 02-12 16:41 ?1074次閱讀

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)的比較

    BP神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)在多個方面存在顯著差異,以下是對兩者的比較: 一、結(jié)構(gòu)特點 BP神經(jīng)網(wǎng)絡(luò) : BP
    的頭像 發(fā)表于 02-12 15:53 ?1061次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的實現(xiàn)工具與框架

    : TensorFlow是由Google Brain團隊開發(fā)的開源機器學習框架,它支持多種深度學習模型的構(gòu)建和訓練,包括卷積神經(jīng)網(wǎng)絡(luò)。TensorFlow以其靈活性和可擴展性而聞名,適用于研究和生產(chǎn)環(huán)境。 特點: 靈活性: TensorFlow提供了豐富的API,允許用戶
    的頭像 發(fā)表于 11-15 15:20 ?950次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的參數(shù)調(diào)整方法

    卷積神經(jīng)網(wǎng)絡(luò)因其在處理具有空間層次結(jié)構(gòu)的數(shù)據(jù)時的卓越性能而受到青睞。然而,CNN的成功很大程度上依賴于其參數(shù)的合理設(shè)置。參數(shù)調(diào)整是一個復雜的過程,涉及到多個超參數(shù)的選擇和優(yōu)化。 網(wǎng)絡(luò)
    的頭像 發(fā)表于 11-15 15:10 ?1656次閱讀

    使用卷積神經(jīng)網(wǎng)絡(luò)進行圖像分類的步驟

    使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)進行圖像分類是一個涉及多個步驟的過程。 1. 問題定義 確定目標 :明確你想要分類的圖像類型,例如貓和狗、不同的植物種類等。 數(shù)據(jù)需求 :確定需要多少數(shù)據(jù)以及數(shù)據(jù)的類型
    的頭像 發(fā)表于 11-15 15:01 ?1154次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)在自然語言處理中的應(yīng)用

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理 卷積神經(jīng)網(wǎng)絡(luò)是一種前饋神經(jīng)網(wǎng)絡(luò),它通過卷積
    的頭像 發(fā)表于 11-15 14:58 ?1068次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    神經(jīng)網(wǎng)絡(luò),也稱為全連接神經(jīng)網(wǎng)絡(luò)(Fully Connected Neural Networks,F(xiàn)CNs),其特點是每一的每個神經(jīng)元都與下一
    的頭像 發(fā)表于 11-15 14:53 ?2261次閱讀

    深度學習中的卷積神經(jīng)網(wǎng)絡(luò)模型

    卷積神經(jīng)網(wǎng)絡(luò)是一種前饋神經(jīng)網(wǎng)絡(luò),其靈感來源于生物的視覺皮層機制。它通過模擬人類視覺系統(tǒng)的處理方式,能夠自動提取圖像特征,從而在圖像識別和分類任務(wù)中表現(xiàn)出色。 卷積
    的頭像 發(fā)表于 11-15 14:52 ?1091次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的基本原理與算法

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)是一類包含卷積計算且具有深度結(jié)構(gòu)的前饋神經(jīng)網(wǎng)絡(luò)(Feedf
    的頭像 發(fā)表于 11-15 14:47 ?2223次閱讀

    RNN模型與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    傳統(tǒng)神經(jīng)網(wǎng)絡(luò)(前饋神經(jīng)網(wǎng)絡(luò)) 2.1 結(jié)構(gòu) 傳統(tǒng)神經(jīng)網(wǎng)絡(luò),通常指的是前饋神經(jīng)網(wǎng)絡(luò)(Feedforward Neural Networks,
    的頭像 發(fā)表于 11-15 09:42 ?1810次閱讀

    LSTM神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)與工作機制

    結(jié)構(gòu)與工作機制的介紹: 一、LSTM神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu) LSTM神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)主要包括以下幾個部分: 記憶單元(Memory Cell) :
    的頭像 發(fā)表于 11-13 10:05 ?2008次閱讀

    關(guān)于卷積神經(jīng)網(wǎng)絡(luò),這些概念你厘清了么~

    取特征的強大工具,例如識別音頻信號或圖像信號中的復雜模式就是其應(yīng)用之一。 1、什么是卷積神經(jīng)網(wǎng)絡(luò)? 神經(jīng)網(wǎng)絡(luò)是一種由神經(jīng)元組成的系統(tǒng)或結(jié)構(gòu)
    發(fā)表于 10-24 13:56