18video性欧美19sex,欧美高清videosddfsexhd,性少妇videosexfreexxx片中国,激情五月激情综合五月看花,亚洲人成网77777色在线播放

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

傾佳電子深度解析AI人工智能微電網(wǎng)解決方案:SiC碳化硅功率半導(dǎo)體如何重塑能源未來

楊茜 ? 來源:jf_33411244 ? 作者:jf_33411244 ? 2025-09-22 06:41 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

傾佳電子深度解析AI人工智能微電網(wǎng)解決方案:SiC碳化硅功率半導(dǎo)體如何重塑能源未來

wKgZO2jQfEKAUMmCABAEJh2OK2Y996.png

傾佳電子(Changer Tech)是一家專注于功率半導(dǎo)體和新能源汽車連接器的分銷商。主要服務(wù)于中國工業(yè)電源、電力電子設(shè)備和新能源汽車產(chǎn)業(yè)鏈。傾佳電子聚焦于新能源、交通電動(dòng)化和數(shù)字化轉(zhuǎn)型三大方向,并提供包括IGBT、SiC MOSFET、GaN等功率半導(dǎo)體器件以及新能源汽車連接器。

傾佳電子楊茜致力于推動(dòng)國產(chǎn)SiC碳化硅模塊在電力電子應(yīng)用中全面取代進(jìn)口IGBT模塊,助力電力電子行業(yè)自主可控和產(chǎn)業(yè)升級!

傾佳電子楊茜咬住SiC碳化硅MOSFET功率器件三個(gè)必然,勇立功率半導(dǎo)體器件變革潮頭:

傾佳電子楊茜咬住SiC碳化硅MOSFET模塊全面取代IGBT模塊和IPM模塊的必然趨勢!

傾佳電子楊茜咬住SiC碳化硅MOSFET單管全面取代IGBT單管和大于650V的高壓硅MOSFET的必然趨勢!

傾佳電子楊茜咬住650V SiC碳化硅MOSFET單管全面取代SJ超結(jié)MOSFET和高壓GaN 器件的必然趨勢!

摘要

傾佳電子旨在深度剖析人工智能(AI)在微電網(wǎng)中的技術(shù)內(nèi)涵,并論證以碳化硅(SiC)為代表的第三代半導(dǎo)體功率器件,如何作為其硬件基石,實(shí)現(xiàn)高能效、高功率密度及高可靠性的系統(tǒng)目標(biāo)。傾佳電子將從AI對能源系統(tǒng)的宏觀賦能、微電網(wǎng)核心架構(gòu)、SiC功率半導(dǎo)體的本征優(yōu)勢,到具體產(chǎn)品(如基本半導(dǎo)體BMF240R12E2G3模塊)在實(shí)際應(yīng)用中的性能驗(yàn)證,層層遞進(jìn)地揭示AI軟件智能與SiC硬件性能之間的深度協(xié)同關(guān)系。最終,傾佳電子將總結(jié)AI與SiC在構(gòu)建新型電力系統(tǒng)中的雙向奔赴,并為行業(yè)發(fā)展提供前瞻性建議。

第一章 引言:能源轉(zhuǎn)型與AI微電網(wǎng)的崛起

1.1 全球能源系統(tǒng)的挑戰(zhàn)與新型電力系統(tǒng)的需求

全球能源系統(tǒng)正經(jīng)歷前所未有的深刻變革。傳統(tǒng)的集中式電網(wǎng)依賴于大型、集中化的發(fā)電廠,其單向的電力傳輸模式在過去一個(gè)世紀(jì)中為社會發(fā)展提供了堅(jiān)實(shí)基礎(chǔ)。然而,隨著可再生能源(如太陽能和風(fēng)能)的快速發(fā)展與并網(wǎng),傳統(tǒng)電網(wǎng)的模式正面臨嚴(yán)峻挑戰(zhàn)??稍偕茉窗l(fā)電具有天然的間歇性和波動(dòng)性,這使得電網(wǎng)的穩(wěn)定性和供需平衡難以維持。此外,極端天氣事件和自然災(zāi)害的頻發(fā),也暴露了傳統(tǒng)電網(wǎng)在面對外部沖擊時(shí)的脆弱性。為了應(yīng)對這些挑戰(zhàn),構(gòu)建一個(gè)具備靈活性、韌性、可預(yù)測性和自我修復(fù)能力的新型電力系統(tǒng)已成為全球共識。

人工智能作為一種顛覆性技術(shù),正為能源系統(tǒng)的轉(zhuǎn)型提供關(guān)鍵賦能。通過深度學(xué)習(xí)和預(yù)測性分析,AI能夠處理來自電網(wǎng)中海量傳感器和智能設(shè)備的數(shù)據(jù),從而實(shí)現(xiàn)對電力負(fù)荷與可再生能源發(fā)電量的精確預(yù)測。與傳統(tǒng)基于歷史數(shù)據(jù)和經(jīng)驗(yàn)的預(yù)測方法相比,AI能夠?qū)⒏呒売?jì)量基礎(chǔ)設(shè)施(AMI)數(shù)據(jù)與實(shí)時(shí)信息深度融合,使預(yù)測精度實(shí)現(xiàn)質(zhì)的飛躍。這種能力從根本上解決了可再生能源并網(wǎng)所固有的“間歇性”和“波動(dòng)性”難題,為電網(wǎng)的動(dòng)態(tài)調(diào)度和優(yōu)化提供了可靠依據(jù),是構(gòu)建未來新型電力系統(tǒng)的核心前提。

這種從被動(dòng)響應(yīng)到主動(dòng)預(yù)測的轉(zhuǎn)變,對電網(wǎng)的硬件執(zhí)行層提出了更高的要求。AI生成的動(dòng)態(tài)、實(shí)時(shí)控制指令需要被電力電子設(shè)備以極高的速度和效率執(zhí)行,以確保電網(wǎng)的穩(wěn)定性。傳統(tǒng)的硅基功率器件,受限于材料特性,在高速、高頻開關(guān)場景下性能會大幅下降,從而限制了AI控制策略的潛力。這為以碳化硅(SiC)為代表的第三代半導(dǎo)體器件的廣泛應(yīng)用提供了歷史性機(jī)遇。

wKgZO2ixr9KAB_fEAAtEeYZcyJI764.pngwKgZPGixr72AD4gAABEzy41TdGw074.pngwKgZPGixr76AclXZABc74ZEXKeQ706.png

1.2 微電網(wǎng):構(gòu)建分布式能源生態(tài)的核心載體

在新型電力系統(tǒng)的宏大愿景中,微電網(wǎng)扮演著至關(guān)重要的角色。微電網(wǎng)是一個(gè)相對獨(dú)立的能源系統(tǒng),它將本地的分布式能源(如柴油/天然氣發(fā)電機(jī)、太陽能電池陣列、風(fēng)力渦輪機(jī))、儲能系統(tǒng)(ESS)以及本地負(fù)載整合在一起。作為一種可控的單元,微電網(wǎng)可以靈活地在與主電網(wǎng)并網(wǎng)或與主電網(wǎng)脫離的孤網(wǎng)模式下運(yùn)行,為電網(wǎng)提供調(diào)頻調(diào)峰等關(guān)鍵服務(wù),從而成為構(gòu)建分布式能源生態(tài)的核心載體。

在微電網(wǎng)內(nèi)部,功率轉(zhuǎn)換系統(tǒng)(PCS)是實(shí)現(xiàn)能量轉(zhuǎn)換和控制的核心設(shè)備。PCS作為連接儲能電池與電網(wǎng)之間的“橋梁”,負(fù)責(zé)將直流電轉(zhuǎn)換為交流電(放電)或?qū)⒔涣麟娹D(zhuǎn)換為直流電(充電),以滿足電網(wǎng)的充放電需求。PCS的性能直接影響著整個(gè)微電網(wǎng)系統(tǒng)的效率和穩(wěn)定性。其關(guān)鍵功能包括:對有功功率(P)和無功功率(Q)的精確控制、頻率/電壓控制以及獨(dú)立電網(wǎng)形成控制等,這些都使得PCS成為微電網(wǎng)調(diào)控的“執(zhí)行大腦”。

1.3 人工智能賦能微電網(wǎng)的必然性與核心價(jià)值

AI與微電網(wǎng)的結(jié)合是能源系統(tǒng)發(fā)展的必然趨勢。AI在微電網(wǎng)中的應(yīng)用場景極為廣泛,它通過評估環(huán)境并采取行動(dòng)來最大化特定目標(biāo),從而充當(dāng)了微電網(wǎng)背后的“智慧代理”。具體應(yīng)用包括:

提高靈活性與韌性:AI和自動(dòng)化技術(shù)可以識別電網(wǎng)中的薄弱環(huán)節(jié),并在可再生能源發(fā)電高峰期存儲多余電能,在電力短缺時(shí)智能調(diào)配儲備能源,從而增強(qiáng)微電網(wǎng)的彈性。

優(yōu)化電力產(chǎn)出:在發(fā)電階段,AI賦能的傳感器網(wǎng)絡(luò)可以優(yōu)化電力產(chǎn)出。例如,對于太陽能,AI工具可以通過預(yù)測太陽輻射強(qiáng)度來提高生產(chǎn)力。

自動(dòng)化電源切換:AI能夠預(yù)測電網(wǎng)不平衡,并區(qū)分短暫的停電與全面的停電,從而自動(dòng)執(zhí)行電源切換協(xié)議,在嚴(yán)重故障發(fā)生前隔離受影響區(qū)域或轉(zhuǎn)供電能。

需求側(cè)管理(DSM):AI和智能電表的協(xié)同應(yīng)用能夠幫助監(jiān)控、規(guī)劃和執(zhí)行能源需求的變化,從而確保供電側(cè)滿足不斷變化的用電需求,有效降低峰值負(fù)荷。

AI在微電網(wǎng)運(yùn)行優(yōu)化中的本質(zhì)是尋找系統(tǒng)中多要素(如源、網(wǎng)、荷、儲)之間的深層邏輯關(guān)系,并在數(shù)據(jù)驅(qū)動(dòng)下提出最優(yōu)策略,以高效應(yīng)對系統(tǒng)運(yùn)行中的不確定性。這意味著AI的價(jià)值不僅在于自動(dòng)化,更在于其在復(fù)雜、動(dòng)態(tài)環(huán)境中進(jìn)行“智慧決策”的能力。這種決策的實(shí)時(shí)性和復(fù)雜性,對硬件執(zhí)行層的響應(yīng)速度提出了苛刻要求。AI的控制指令需要被功率轉(zhuǎn)換設(shè)備以納秒級甚至更短的時(shí)間尺度轉(zhuǎn)化為物理動(dòng)作,才能真正實(shí)現(xiàn)對電網(wǎng)的精準(zhǔn)控制。傳統(tǒng)的硅基功率器件,在開關(guān)速度和頻率上存在瓶頸,無法完全匹配AI的實(shí)時(shí)控制需求,這限制了AI潛能的充分釋放,也正是SiC功率半導(dǎo)體技術(shù)在AI微電網(wǎng)中得以大展身手的原因。

第二章 人工智能微電網(wǎng)的技術(shù)架構(gòu)與控制邏輯

2.1 微電網(wǎng)的核心組成與物理拓?fù)?/p>

微電網(wǎng)的核心物理架構(gòu)由分布式能源、儲能系統(tǒng)、負(fù)載和功率轉(zhuǎn)換系統(tǒng)(PCS)組成。在這一架構(gòu)中,PCS是實(shí)現(xiàn)能量雙向流動(dòng)的關(guān)鍵設(shè)備,其性能和拓?fù)浣Y(jié)構(gòu)直接決定了微電網(wǎng)的整體效率和可靠性。PCS通過控制電力電子開關(guān)器件的通斷,實(shí)現(xiàn)儲能電池與電網(wǎng)之間的能量轉(zhuǎn)換。

在拓?fù)浣Y(jié)構(gòu)方面,微電網(wǎng)的PCS設(shè)計(jì)正在從傳統(tǒng)的基于IGBT的三電平拓?fù)湎蚧赟iC MOSFET的兩電平拓?fù)溲葸M(jìn)。在傳統(tǒng)IGBT時(shí)代,為了在高壓應(yīng)用中兼顧效率,PCS常采用T型或I型三電平拓?fù)?。這種拓?fù)渫ㄟ^增加開關(guān)器件,將直流母線電壓分解為多個(gè)電平,以降低單個(gè)器件的耐壓要求和開關(guān)損耗。然而,三電平拓?fù)涞娜秉c(diǎn)是結(jié)構(gòu)復(fù)雜、控制難度高,且器件數(shù)量多,增加了系統(tǒng)的體積和潛在的故障點(diǎn)。

隨著SiC MOSFET技術(shù)的成熟,一種更具優(yōu)勢的解決方案——半橋兩電平拓?fù)溟_始被廣泛應(yīng)用。SiC器件本身具備耐高壓、高頻、低損耗的特性,這使得簡單直接的兩電平拓?fù)湓诟唛_關(guān)頻率下也能保持極高的效率。這種演進(jìn)的背后邏輯在于,SiC器件的高速開關(guān)能力使得采用更簡單的拓?fù)涑蔀榭赡?,從而簡化?a target="_blank">控制系統(tǒng),降低了系統(tǒng)復(fù)雜度、體積和成本。這種架構(gòu)上的優(yōu)化,不僅提高了控制系統(tǒng)的響應(yīng)速度和魯棒性,也為AI在微電網(wǎng)中實(shí)現(xiàn)更快速、更精準(zhǔn)的控制提供了物理基礎(chǔ)。例如,在125kW工商業(yè)儲能PCS中,SiC MOSFET機(jī)型相比IGBT機(jī)型,其PCS模塊功率密度提升超過25%,系統(tǒng)尺寸得以顯著減小。

2.2 人工智能在微電網(wǎng)運(yùn)行中的關(guān)鍵應(yīng)用與控制邏輯

AI在微電網(wǎng)中的作用,從宏觀的預(yù)測到微觀的控制執(zhí)行,貫穿了整個(gè)運(yùn)行周期。其核心應(yīng)用和控制邏輯包括:

預(yù)測性分析與優(yōu)化調(diào)度:AI通過深度學(xué)習(xí)模型,融合來自AMI等先進(jìn)計(jì)量基礎(chǔ)設(shè)施的實(shí)時(shí)數(shù)據(jù),能夠?qū)崿F(xiàn)對電力負(fù)荷、可再生能源發(fā)電量和電網(wǎng)狀態(tài)的更精確預(yù)測?;谶@些預(yù)測結(jié)果,AI控制器能夠以最大限度提高可再生能源利用率、系統(tǒng)經(jīng)濟(jì)性及可靠性為目標(biāo),制定多要素、多目標(biāo)的優(yōu)化調(diào)度策略。例如,在并網(wǎng)型微電網(wǎng)中,AI可以進(jìn)行日前和日內(nèi)優(yōu)化調(diào)度,以應(yīng)對電力市場價(jià)格波動(dòng),實(shí)現(xiàn)最大化收益。

自愈與預(yù)測性維護(hù):AI通過物聯(lián)網(wǎng)IoT)傳感器網(wǎng)絡(luò)實(shí)時(shí)監(jiān)測電網(wǎng)中的設(shè)備和線路狀況。它能夠比傳統(tǒng)方法更早地檢測到潛在的風(fēng)險(xiǎn),預(yù)測設(shè)備故障,并在實(shí)際故障發(fā)生前通知技術(shù)人員進(jìn)行維護(hù)。在發(fā)生電力中斷時(shí),AI工具能夠精準(zhǔn)區(qū)分短時(shí)停電與全面停電,并自動(dòng)執(zhí)行電源切換協(xié)議,將故障隔離并重新分配電力,從而使微電網(wǎng)具備“自愈”能力。

需求側(cè)管理:AI與智能電表相結(jié)合,可以監(jiān)控和預(yù)測用戶側(cè)的用電需求變化。它能夠幫助制定和執(zhí)行靈活的需求響應(yīng)策略,例如在用電高峰期暫時(shí)關(guān)閉非關(guān)鍵設(shè)備,從而平抑峰值負(fù)荷,減輕電網(wǎng)壓力。

2.3 核心挑戰(zhàn):傳統(tǒng)硬件如何限制AI的潛能?

盡管AI為微電網(wǎng)帶來了巨大的智能優(yōu)勢,但其潛能的充分發(fā)揮依然受到傳統(tǒng)硬件的制約。傳統(tǒng)的硅基IGBT器件在以下幾個(gè)方面限制了AI控制策略的落地:

開關(guān)頻率與損耗:IGBT的開關(guān)速度相對較慢,在高開關(guān)頻率下會產(chǎn)生顯著的開關(guān)損耗,這不僅降低了系統(tǒng)效率,還需要更大、更笨重的散熱系統(tǒng)。為了平衡損耗與性能,傳統(tǒng)IGBT系統(tǒng)的開關(guān)頻率通常被限制在較低的水平,這直接限制了PCS的功率密度和小型化。

響應(yīng)速度:AI控制器生成的復(fù)雜、動(dòng)態(tài)的控制指令需要硬件能夠快速響應(yīng),以實(shí)現(xiàn)對電網(wǎng)的精確調(diào)控。IGBT較慢的開關(guān)速度和關(guān)斷延遲,使得整個(gè)控制回路的響應(yīng)速度受限,無法完全匹配AI的實(shí)時(shí)決策需求,從而可能導(dǎo)致AI優(yōu)化效果的折扣。

無源元件尺寸:IGBT的低開關(guān)頻率限制了無源元件(如電感、電容)的尺寸難以減小。這使得基于IGBT的PCS系統(tǒng)體積龐大,難以集成到小型化的分布式能源設(shè)備中,從而阻礙了微電網(wǎng)的廣泛部署。

第三章 碳化硅(SiC)功率半導(dǎo)體:AI微電網(wǎng)的硬件基石

3.1 SiC與Si材料的本征優(yōu)勢及對電力電子系統(tǒng)的顛覆性影響

在應(yīng)對AI微電網(wǎng)對高性能硬件的迫切需求時(shí),碳化硅(SiC)作為第三代半導(dǎo)體材料,展現(xiàn)出了對傳統(tǒng)硅(Si)器件的顛覆性優(yōu)勢。SiC與Si材料的本征差異是其性能飛躍的根源。

核心材料特性:

寬禁帶:SiC的禁帶寬度約為3.26 eV,是Si(1.1 eV)的三倍。這使得SiC器件能夠承受更高的電壓和更高的工作溫度。

高擊穿電場:SiC的擊穿電場強(qiáng)度是Si的十倍(3×106V/cm vs. 0.3×106V/cm)。這使得SiC器件能夠以更薄的漂移層承受更高的電壓,從而實(shí)現(xiàn)更低的導(dǎo)通電阻。

高熱導(dǎo)率:SiC的熱導(dǎo)率高達(dá)4.9W/cm?K,遠(yuǎn)超Si的熱導(dǎo)率。這使得SiC器件更容易散熱,從而在更高結(jié)溫下(可達(dá) 200°C)可靠運(yùn)行。

系統(tǒng)級技術(shù)優(yōu)勢:

高壓與高頻:上述材料特性使得SiC器件能夠以更小的尺寸承受更高的電壓,同時(shí)實(shí)現(xiàn)比Si器件快數(shù)倍的開關(guān)速度和低得多的開關(guān)損耗。

高功率密度:SiC的高速開關(guān)能力使得功率轉(zhuǎn)換器中的無源元件(電感、電容)尺寸可以大幅減小,從而顯著提升系統(tǒng)的功率密度,實(shí)現(xiàn)設(shè)備的小型化、輕量化。

高可靠性與低成本:雖然SiC器件本身制造成本較高,但從系統(tǒng)層面來看,其帶來的高效率、緊湊設(shè)計(jì)和對冷卻系統(tǒng)需求的降低,可以顯著降低整個(gè)系統(tǒng)的總成本。此外,SiC器件的耐高溫特性也提升了系統(tǒng)在惡劣環(huán)境下的可靠性。

3.2 基本半導(dǎo)體SiC產(chǎn)品矩陣概述

wKgZPGi0EmKAGtc2AAp3luZBn24424.png

作為專注于SiC功率器件研發(fā)與產(chǎn)業(yè)化的創(chuàng)新企業(yè),基本半導(dǎo)體提供了覆蓋不同應(yīng)用場景的豐富產(chǎn)品線,為AI微電網(wǎng)解決方案提供了堅(jiān)實(shí)的硬件基礎(chǔ)。

wKgZPGjPsFyAWfNBADBOZydP7z4946.pngwKgZO2jPsFuAPwYAACI8XAqpM2A640.png

SiC MOSFET分立器件:針對對功率密度和開關(guān)速度有較高要求的應(yīng)用,基本半導(dǎo)體推出了多款SiC MOSFET分立器件。例如,B3M010C075Z是一款750V耐壓、240A電流的SiC MOSFET,其導(dǎo)通電阻典型值低至10mΩ。該器件具有低電容、高雪崩耐量、低導(dǎo)通電阻等特點(diǎn),適用于開關(guān)模式電源(SMPS)、光伏逆變器和電動(dòng)汽車充電站等高頻應(yīng)用。另一款B3M013C120Z則為1200V耐壓、180A電流,導(dǎo)通電阻典型值為 13.5mΩ,同樣具備低開關(guān)損耗和低電容,是高壓DC/DC變換器、電源逆變器和電機(jī)驅(qū)動(dòng)的理想選擇。

SiC MOSFET功率模塊:為了滿足大功率應(yīng)用的需求,基本半導(dǎo)體提供了從34mm到62mm封裝的半橋模塊。這些模塊采用SiC MOSFET芯片技術(shù),具有低導(dǎo)通電阻和低開關(guān)損耗等特點(diǎn)。其中,BMF160R12RA3是一款34mm封裝的1200V/160A半橋模塊,其導(dǎo)通電阻典型值僅為 7.5mΩ,適用于高頻應(yīng)用。針對更大功率的應(yīng)用,BMF360R12KA3(1200V/360A)和BMF540R12KA3(1200V/540A)則采用了62mm封裝,導(dǎo)通電阻典型值分別低至 3.7mΩ和2.5mΩ,是儲能系統(tǒng)、UPS、太陽能應(yīng)用等高頻大功率應(yīng)用的首選。

表格3:基本半導(dǎo)體SiC MOSFET主要產(chǎn)品參數(shù)概覽

B3M010C075Z 750 240 (at 25°C) 10mΩ (at TC=25°C, ID=80A) 220 910 TO-247-4
B3M013C120Z 1200 180 (at 25°C) 13.5mΩ (at TJ=25°C, ID=60A) 225 1200 TO-247-4
BMF160R12RA3 1200 160 (at 75°C) 7.5mΩ (at Tvj=25°C) 440 8900 34mm
BMF240R12E2G3 1200 240 (at 80°C) 5.5mΩ (at Tvj=25°C) 492 7400 Pcore?? 2 E2B
BMF360R12KA3 1200 360 (at 90°C) 3.7mΩ (at Tvj=25°C) 880 7600 62mm
BMF540R12KA3 1200 540 (at 90°C) 2.5mΩ (at Tvj=25°C) 1320 14800 62mm
型號 VDSS (V) ID (A) @ TC RDS(on).typ (@chip) QG (nC) Eon (μJ) 封裝

第四章 基本半導(dǎo)體SiC功率半導(dǎo)體在微電網(wǎng)PCS中的應(yīng)用深度分析

4.1 BMF240R12E2G3模塊在125kW工商業(yè)PCS中的性能驗(yàn)證

為了深入探討SiC器件在AI微電網(wǎng)中的實(shí)際性能,傾佳電子以基本半導(dǎo)體的BMF240R12E2G3半橋模塊在125kW工商業(yè)儲能PCS中的應(yīng)用為例進(jìn)行分析。該模塊采用Pcore?? 2 E2B封裝,額定電壓1200V,電流240A,其導(dǎo)通電阻典型值僅為 5.5mΩ 。

仿真數(shù)據(jù)解讀: 仿真條件設(shè)定為PCS整流和逆變?nèi)嗨臉虮弁負(fù)?,直流母線電壓900V,交流母線電壓400V。通過在不同的負(fù)載(1倍、1.1倍、1.2倍)、開關(guān)頻率(32kHz, 36kHz, 40kHz)和散熱器溫度(65°C, 70°C, 80°C)下進(jìn)行仿真,得到了模塊的損耗和結(jié)溫?cái)?shù)據(jù)。

表格1:BMF240R12E2G3模塊在125kW PCS整流工況下的性能仿真數(shù)據(jù)(100%負(fù)載)

32 65 99.4 100.4 199.9 99.04 106.9
36 65 100.3 112.7 213.1 98.98 109.7
40 65 101.1 124.9 226 98.91 112.5
32 70 101.2 99.6 200.8 99.03 112.1
36 70 102 111.8 213.8 98.97 114.8
40 70 102.8 123.9 226.7 98.91 117.5
32 80 112.7 84 196.7 99.05 122.3
36 80 105.4 110 215.5 98.96 125
40 80 106.2 121.9 228.1 98.90 127.7
數(shù)據(jù)來源:,
載頻 fsw (kHz) 散熱器溫度 (°C) 導(dǎo)通損耗 (W) 開關(guān)損耗 (W) 總損耗 (W) 效率 (%) 最高結(jié)溫 (°C)

此仿真數(shù)據(jù)揭示了BMF240R12E2G3模塊一項(xiàng)獨(dú)特的性能特性:隨著散熱器溫度的升高,其開關(guān)損耗反而呈現(xiàn)下降趨勢。這與傳統(tǒng)硅基器件開關(guān)損耗隨溫度升高而增加的特性截然相反。在AI微電網(wǎng)的實(shí)際應(yīng)用中,這意味著當(dāng)系統(tǒng)在夏季高溫或高負(fù)載(如110%或120%負(fù)載)工況下運(yùn)行時(shí),模塊的開關(guān)損耗會部分抵消導(dǎo)通損耗的增加,使得總損耗變化不明顯,從而保證了系統(tǒng)在極端條件下的高效性和可靠性。這一特性為AI優(yōu)化調(diào)度策略提供了更堅(jiān)實(shí)的物理基礎(chǔ),使得AI控制器能夠更自信地在高功率、高溫度條件下進(jìn)行調(diào)度,而不必?fù)?dān)心硬件性能的急劇惡化。

wKgZO2i6Lc6Aeh2dAAUhwxQQOPk510.pngwKgZO2i-K22ANbCVAAYg8-4ccX0877.pngwKgZPGjG3o-AcNrQAAc3-XHsLHY231.png

SiC SBD與Si3N4陶瓷基板帶來的可靠性保障:

內(nèi)嵌SiC SBD技術(shù):BMF240R12E2G3模塊的一個(gè)關(guān)鍵技術(shù)亮點(diǎn)是在其SiC MOSFET元胞中內(nèi)嵌了SiC肖特基勢壘二極管(SBD)。在換流時(shí),電流由SBD而非MOSFET自身的體二極管導(dǎo)通。相較于SiC MOSFET的體二極管,SiC SBD具有更低的導(dǎo)通壓降( VSD)和“零反向恢復(fù)”特性,其體二極管的導(dǎo)通內(nèi)阻(Ron)在運(yùn)行1000小時(shí)后的波動(dòng)不到3%。這一技術(shù)顯著提升了模塊在電網(wǎng)浪涌電流下的抵御能力,能夠幫助整個(gè)系統(tǒng)安全穿越電網(wǎng)異常波動(dòng)等危險(xiǎn)工況,為AI微電網(wǎng)的“自愈”功能提供了堅(jiān)實(shí)的物理基礎(chǔ)。

Si3N4陶瓷基板:功率模塊的可靠性不僅依賴于芯片本身,也與其封裝材料密切相關(guān)。BMF240R12E2G3模塊采用了高性能的Si3N4(氮化硅)陶瓷基板。與傳統(tǒng)的Al2O3(氧化鋁)和AlN(氮化鋁)相比,Si3N4具有更高的熱導(dǎo)率、抗彎強(qiáng)度和斷裂強(qiáng)度,且其熱膨脹系數(shù)更接近于銅基板,因此在溫度循環(huán)下不易開裂。在多達(dá)1000次的溫度沖擊試驗(yàn)后,Si3N4覆銅板仍能保持良好的接合強(qiáng)度,而Al2O3和AlN在10次沖擊后就可能出現(xiàn)分層。因此,Si3N4基板的應(yīng)用直接保障了模塊在頻繁的啟停循環(huán)下的長期可靠性,這對于AI微電網(wǎng)中對充放電和開關(guān)次數(shù)要求極高的儲能PCS應(yīng)用至關(guān)重要。

表格2:SiC模塊核心封裝材料性能對比

Al2O3 24 6.8 450 4.2 差(10次溫度沖擊后分層)
AlN 170 4.7 350 3.4 較差(10次溫度沖擊后分層)
Si3N4 90 2.5 700 6.0 優(yōu)(1000次溫度沖擊后仍保持良好)
數(shù)據(jù)來源:
類型 熱導(dǎo)率 (W/mk) 熱膨脹系數(shù) (ppm/K) 抗彎強(qiáng)度 (N/mm2) 斷裂強(qiáng)度 (Mpa/√m) 功率循環(huán)能力

4.2 門極驅(qū)動(dòng)解決方案的協(xié)同作用

wKgZO2i7xcqAKystAAn8hNekutQ859.png

SiC功率器件的卓越性能需要同樣先進(jìn)的門極驅(qū)動(dòng)解決方案來充分發(fā)揮。門極驅(qū)動(dòng)器作為連接AI控制信號與SiC器件的“神經(jīng)中樞”,其性能直接影響系統(tǒng)的可靠性、效率和響應(yīng)速度。

BTD5452R智能隔離驅(qū)動(dòng)芯片:基本半導(dǎo)體的BTD5452R是一款專為IGBT和SiC MOSFET設(shè)計(jì)的智能隔離驅(qū)動(dòng)芯片。它具備高達(dá)5A的峰值拉電流和9A的峰值灌電流能力,能夠快速、有力地驅(qū)動(dòng)SiC器件的柵極電容。其高達(dá)$250 text{V/ns}$的典型共模瞬態(tài)抑制(CMTI)能力,確保了在高速開關(guān)產(chǎn)生的復(fù)雜電磁環(huán)境中信號傳輸?shù)姆€(wěn)定性和可靠性。

米勒效應(yīng)與主動(dòng)米勒鉗位(Active Miller Clamp)機(jī)制:

米勒效應(yīng)原理:在半橋拓?fù)渲校?dāng)一個(gè)開關(guān)管(例如上管)開通時(shí),橋臂中點(diǎn)電壓會快速上升。這種高速的電壓變化(dv/dt)會通過另一個(gè)開關(guān)管(例如下管)的柵漏寄生電容(Cgd)產(chǎn)生一個(gè)瞬態(tài)電流,即“米勒電流”。這個(gè)米勒電流在門極回路電阻上產(chǎn)生電壓,可能將下管的柵極電壓抬高,一旦超過其開啟閾值電壓( VGS(th)),就會導(dǎo)致下管誤開通,從而造成上下管直通的災(zāi)難性故障。SiC MOSFET由于其高速開關(guān)特性,產(chǎn)生的dv/dt更高,米勒效應(yīng)也更為顯著。

BTD5452R的應(yīng)對方案:BTD5452R集成了主動(dòng)米勒鉗位功能來有效抑制米勒效應(yīng)。該功能在SiC MOSFET處于關(guān)斷狀態(tài)時(shí)激活。當(dāng)其柵極電壓低于特定閾值(1.8V)時(shí),芯片內(nèi)部會激活一個(gè)低阻抗路徑,將柵極與負(fù)電源(VEE)連接,從而快速泄放米勒電流,防止柵極電壓被抬高,有效地抑制誤開通。

退飽和(DESAT)保護(hù)與軟關(guān)斷機(jī)制:

工作機(jī)制:BTD5452R集成了退飽和(DESAT)故障檢測功能,用于識別SiC MOSFET的短路狀況。當(dāng)SiC MOSFET發(fā)生短路時(shí),其漏源電壓(VDS)會迅速升高,若DESAT引腳的電壓超過預(yù)設(shè)的$9 text{V}$閾值,芯片將立即觸發(fā)故障報(bào)警(XFLT=L)并啟動(dòng)軟關(guān)斷。

軟關(guān)斷流程:在軟關(guān)斷模式下,芯片會以一個(gè)受控的較小電流(典型值為150mA)緩慢對柵極進(jìn)行放電。這種受控的關(guān)斷方式能有效抑制由于母線寄生電感引起的關(guān)斷尖峰電壓,從而保護(hù)SiC器件,防止故障進(jìn)一步擴(kuò)散。當(dāng)柵極電壓下降到$1.8 text{V}$時(shí),主動(dòng)米勒鉗位功能被激活,進(jìn)一步將柵極電壓拉至負(fù)電源( VEE),確保器件可靠關(guān)斷。

這種軟關(guān)斷機(jī)制與AI微電網(wǎng)的“自愈”能力緊密相連。AI控制器在檢測到系統(tǒng)異常后,需要一個(gè)能夠安全、快速地隔離故障區(qū)域的物理執(zhí)行層。BTD5452R的軟關(guān)斷和DESAT保護(hù)機(jī)制,為AI的故障處理指令提供了安全、可靠的硬件執(zhí)行能力,是實(shí)現(xiàn)微電網(wǎng)高韌性和高可靠性的關(guān)鍵。

第五章 AI控制邏輯與SiC器件響應(yīng)的深度協(xié)同

5.1 從“預(yù)測”到“執(zhí)行”:SiC器件如何加速AI控制回路

AI微電網(wǎng)的核心優(yōu)勢在于其從宏觀預(yù)測到微觀控制的閉環(huán)反饋系統(tǒng)。AI通過分析海量數(shù)據(jù),實(shí)時(shí)生成最優(yōu)化的控制指令,但這些指令的價(jià)值取決于硬件的響應(yīng)速度。如果硬件響應(yīng)滯后,AI的優(yōu)化效果將大打折扣,甚至可能導(dǎo)致系統(tǒng)失穩(wěn)。

SiC器件的卓越性能正是為了解決這一“執(zhí)行瓶頸”而生。SiC MOSFET的納秒級開關(guān)速度(例如,B3M010C075Z的開通延遲時(shí)間t_{d(on)}典型值僅為21ns )和極低的開關(guān)損耗,使其能夠以極高的頻率和精度響應(yīng)AI的控制指令。這使得AI控制器可以采用更先進(jìn)、更精細(xì)的控制算法,如滑模控制或預(yù)測控制,而無需擔(dān)心硬件的響應(yīng)能力。SiC器件的超高速響應(yīng)能力,從根本上縮短了AI控制回路的反饋時(shí)間,實(shí)現(xiàn)了AI控制的實(shí)時(shí)性、精準(zhǔn)性,從而將AI的智能決策能力充分轉(zhuǎn)化為物理系統(tǒng)的運(yùn)行優(yōu)勢。

5.2 SiC高頻特性對AI優(yōu)化調(diào)度的系統(tǒng)賦能

SiC器件的本征優(yōu)勢,在高頻應(yīng)用中被放大,從而為AI微電網(wǎng)帶來了系統(tǒng)層面的賦能。

功率密度提升:SiC器件的高開關(guān)頻率允許功率轉(zhuǎn)換器使用更小尺寸的無源元件(如電感和電容),從而顯著減小了PCS的體積和重量,提升了功率密度。SiC版本工商業(yè)儲能變流器(PCS),在采用SiC器件后,模塊功率密度整體提升了25%以上,使得儲能一體柜的尺寸得以減小,能量密度顯著提升。

物理層面的小型化:AI微電網(wǎng)的一個(gè)重要發(fā)展趨勢是分布式部署,即將儲能和發(fā)電單元分散到社區(qū)、工廠、家庭等各個(gè)節(jié)點(diǎn)。SiC器件帶來的高功率密度使得PCS可以更小、更輕,更易于集成到儲能柜、電動(dòng)汽車充電樁等分布式設(shè)備中,從而為AI微電網(wǎng)的廣泛部署提供了物理上的可能性。

能效提升:SiC器件的低損耗特性,尤其是在高頻硬開關(guān)拓?fù)渲械膬?yōu)勢,使得PCS在額定功率工況下,平均效率提升了1%以上。這種能效的提升與AI的節(jié)能調(diào)度策略相結(jié)合,實(shí)現(xiàn)了能源利用的“軟硬協(xié)同”優(yōu)化。AI的調(diào)度策略可以更有效地利用SiC器件的低損耗特性,從而在系統(tǒng)層面實(shí)現(xiàn)更高的經(jīng)濟(jì)性和可持續(xù)性。

wKgZO2i6CPaAPBQEACVVeotjATY664.pngwKgZO2izfYmASAElAAmWZxkaQyc958.pngwKgZO2jILNqAdTiwABYl6l6M0dE182.png

第六章 結(jié)論與建議

6.1 結(jié)論:AI微電網(wǎng)與SiC技術(shù)的雙向奔赴

傾佳電子通過對人工智能微電網(wǎng)技術(shù)內(nèi)涵的深入分析,以及對碳化硅功率半導(dǎo)體在其中所扮演角色的詳盡論證,得出以下結(jié)論:

AI微電網(wǎng)與SiC技術(shù)并非簡單的技術(shù)疊加,而是一種深度的技術(shù)協(xié)同關(guān)系。AI為微電網(wǎng)提供了“智慧大腦”,使其具備了數(shù)據(jù)驅(qū)動(dòng)的預(yù)測、優(yōu)化、自愈等高級功能,從根本上改變了傳統(tǒng)電網(wǎng)的調(diào)度模式。而SiC功率半導(dǎo)體則為微電網(wǎng)提供了“強(qiáng)健體魄”,以其高能效、高功率密度、高可靠性和超高速響應(yīng)能力,完美地執(zhí)行了AI的每一個(gè)控制指令。

AI的決策需要SiC的性能來落地:AI產(chǎn)生的復(fù)雜、動(dòng)態(tài)的控制指令,只有通過SiC器件的超高速開關(guān)特性,才能被迅速、精準(zhǔn)地轉(zhuǎn)化為物理動(dòng)作,從而確保電網(wǎng)的穩(wěn)定運(yùn)行和最優(yōu)調(diào)度。傳統(tǒng)的硅基器件在響應(yīng)速度和高頻損耗方面的局限,正是限制AI潛能發(fā)揮的關(guān)鍵瓶頸。

SiC的優(yōu)勢需要AI的智能來發(fā)揮:SiC器件的本征優(yōu)勢,如高頻低損耗,需要AI的智能控制才能被充分利用。AI可以根據(jù)SiC器件在不同溫度和負(fù)載下的特性(如BMF240R12E2G3獨(dú)特的開關(guān)損耗負(fù)溫度特性),制定出在極端工況下仍能保持高效率和高可靠性的優(yōu)化調(diào)度策略。

兩者的結(jié)合形成了一個(gè)強(qiáng)大的正反饋循環(huán):AI的智能提升了微電網(wǎng)的韌性和效率,而SiC的性能則為AI的控制提供了無限可能,共同推動(dòng)了新型電力系統(tǒng)的構(gòu)建。

深圳市傾佳電子有限公司(簡稱“傾佳電子”)是聚焦新能源與電力電子變革的核心推動(dòng)者:
傾佳電子成立于2018年,總部位于深圳福田區(qū),定位于功率半導(dǎo)體與新能源汽車連接器的專業(yè)分銷商,業(yè)務(wù)聚焦三大方向:
新能源:覆蓋光伏、儲能、充電基礎(chǔ)設(shè)施;
交通電動(dòng)化:服務(wù)新能源汽車三電系統(tǒng)(電控、電池、電機(jī))及高壓平臺升級;
數(shù)字化轉(zhuǎn)型:支持AI算力電源、數(shù)據(jù)中心等新型電力電子應(yīng)用。
公司以“推動(dòng)國產(chǎn)SiC替代進(jìn)口、加速能源低碳轉(zhuǎn)型”為使命,響應(yīng)國家“雙碳”政策(碳達(dá)峰、碳中和),致力于降低電力電子系統(tǒng)能耗。
需求SiC碳化硅MOSFET單管及功率模塊,配套驅(qū)動(dòng)板及驅(qū)動(dòng)IC,請搜索傾佳電子楊茜

wKgZO2izZ5-AWfgoAAftGrzlebE922.pngwKgZPGizZ6OATf2QAA8TJn5joYA115.png

6.2 建議:針對AI微電網(wǎng)系統(tǒng)開發(fā)者的SiC器件選型與應(yīng)用策略

針對AI微電網(wǎng)系統(tǒng)的開發(fā)者和工程師,傾佳電子提供以下SiC器件選型與應(yīng)用策略建議:

器件選型:在開發(fā)高功率密度、高能效的AI微電網(wǎng)PCS時(shí),應(yīng)優(yōu)先選用具備低導(dǎo)通電阻、低開關(guān)損耗和高閾值電壓的SiC MOSFET模塊。例如,BMF240R12E2G3模塊憑借其優(yōu)秀的性能,尤其是在高溫下的開關(guān)損耗負(fù)溫度特性,是125kW及以上功率等級應(yīng)用的理想選擇。

驅(qū)動(dòng)方案:為了充分發(fā)揮SiC器件的高速開關(guān)優(yōu)勢,并確保系統(tǒng)在復(fù)雜電磁環(huán)境下的可靠性,建議采用集成主動(dòng)米勒鉗位和退飽和(DESAT)短路保護(hù)功能的智能隔離驅(qū)動(dòng)芯片,如BTD5452R。其主動(dòng)米勒鉗位功能能有效抑制SiC器件的誤開通,而軟關(guān)斷和DESAT保護(hù)則能在故障發(fā)生時(shí)提供安全的關(guān)斷路徑,從而保障系統(tǒng)高韌性。

熱設(shè)計(jì)與封裝:利用SiC器件的高熱導(dǎo)率和高結(jié)溫特性,優(yōu)化散熱系統(tǒng)設(shè)計(jì),以實(shí)現(xiàn)更緊湊的系統(tǒng)封裝。同時(shí),優(yōu)先選擇采用高可靠性封裝材料(如Si3N4陶瓷基板)的模塊,以確保在頻繁的功率循環(huán)下具備長期可靠性。

系統(tǒng)集成:將AI控制算法與SiC硬件特性進(jìn)行深度融合,設(shè)計(jì)出能夠充分利用SiC高頻、低損耗優(yōu)勢的控制策略。這包括采用更快的控制環(huán)路、更精細(xì)的調(diào)制策略,從而在能效、功率密度和可靠性方面實(shí)現(xiàn)全面的系統(tǒng)優(yōu)化。通過這種“軟硬協(xié)同”的策略,才能真正釋放AI和SiC技術(shù)在新型電力系統(tǒng)中的巨大潛力。

審核編輯 黃宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    88

    文章

    37126

    瀏覽量

    291179
  • 人工智能
    +關(guān)注

    關(guān)注

    1812

    文章

    49518

    瀏覽量

    258902
  • 功率半導(dǎo)體
    +關(guān)注

    關(guān)注

    23

    文章

    1373

    瀏覽量

    44858
  • 微電網(wǎng)
    +關(guān)注

    關(guān)注

    24

    文章

    962

    瀏覽量

    36386
收藏 人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點(diǎn)推薦

    能源版圖重塑電子碳化硅SiC)如何賦能AI數(shù)據(jù)中心時(shí)代的效率與機(jī)遇

    能源版圖重塑電子碳化硅SiC)如何賦能
    的頭像 發(fā)表于 10-21 10:06 ?125次閱讀
    <b class='flag-5'>能源</b>版圖<b class='flag-5'>重塑</b>:<b class='flag-5'>傾</b><b class='flag-5'>佳</b><b class='flag-5'>電子</b><b class='flag-5'>碳化硅</b>(<b class='flag-5'>SiC</b>)如何賦能<b class='flag-5'>AI</b>數(shù)據(jù)中心時(shí)代的效率與機(jī)遇

    構(gòu)建下一代電力架構(gòu):電子面向AI服務(wù)器的全數(shù)字雙輸入碳化硅電源深度解析

    構(gòu)建下一代電力架構(gòu):電子面向AI服務(wù)器的全數(shù)字雙輸入碳化硅電源深度
    的頭像 發(fā)表于 10-20 19:58 ?46次閱讀
    構(gòu)建下一代電力架構(gòu):<b class='flag-5'>傾</b><b class='flag-5'>佳</b><b class='flag-5'>電子</b>面向<b class='flag-5'>AI</b>服務(wù)器的全數(shù)字雙輸入<b class='flag-5'>碳化硅</b>電源<b class='flag-5'>深度</b><b class='flag-5'>解析</b>

    賦能AI革命:電子SiC碳化硅器件如何重塑數(shù)據(jù)中心與電網(wǎng)能源格局

    賦能AI革命:電子SiC碳化硅器件如何重塑數(shù)據(jù)中
    的頭像 發(fā)表于 10-19 12:47 ?38次閱讀
    賦能<b class='flag-5'>AI</b>革命:<b class='flag-5'>傾</b><b class='flag-5'>佳</b><b class='flag-5'>電子</b><b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b>器件如何<b class='flag-5'>重塑</b>數(shù)據(jù)中心與<b class='flag-5'>電網(wǎng)</b>的<b class='flag-5'>能源</b>格局

    電子SiC碳化硅電網(wǎng)儲能領(lǐng)域的崛起:功率變換系統(tǒng)拓?fù)渑c技術(shù)趨勢的技術(shù)分析

    電子SiC碳化硅電網(wǎng)儲能領(lǐng)域的崛起:
    的頭像 發(fā)表于 10-19 09:19 ?25次閱讀
    <b class='flag-5'>傾</b><b class='flag-5'>佳</b><b class='flag-5'>電子</b><b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b>在<b class='flag-5'>微</b><b class='flag-5'>電網(wǎng)</b>儲能領(lǐng)域的崛起:<b class='flag-5'>功率</b>變換系統(tǒng)拓?fù)渑c技術(shù)趨勢的技術(shù)分析

    電子碳化硅MOSFET高級柵極驅(qū)動(dòng)設(shè)計(jì):核心原理與未來趨勢綜合技術(shù)評述

    電子楊茜咬住SiC碳化硅MOSFET功率器件三個(gè)必然,勇立
    的頭像 發(fā)表于 10-18 21:22 ?35次閱讀
    <b class='flag-5'>傾</b><b class='flag-5'>佳</b><b class='flag-5'>電子</b><b class='flag-5'>碳化硅</b>MOSFET高級柵極驅(qū)動(dòng)設(shè)計(jì):核心原理與<b class='flag-5'>未來</b>趨勢綜合技術(shù)評述

    電子行業(yè)洞察:中國SiC碳化硅功率半導(dǎo)體發(fā)展趨勢與企業(yè)采購策略深度解析

    電子行業(yè)洞察:中國SiC碳化硅功率半導(dǎo)體發(fā)展趨勢
    的頭像 發(fā)表于 10-09 18:31 ?753次閱讀
    <b class='flag-5'>傾</b><b class='flag-5'>佳</b><b class='flag-5'>電子</b>行業(yè)洞察:中國<b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b><b class='flag-5'>半導(dǎo)體</b>發(fā)展趨勢與企業(yè)采購策略<b class='flag-5'>深度</b><b class='flag-5'>解析</b>

    電子D類音頻放大器架構(gòu)、技術(shù)趨勢及碳化硅MOSFET應(yīng)用價(jià)值深度解析

    效率與保真度的融合:電子D類音頻放大器架構(gòu)、技術(shù)趨勢及碳化硅MOSFET應(yīng)用價(jià)值深度解析
    的頭像 發(fā)表于 10-02 15:31 ?100次閱讀
    <b class='flag-5'>傾</b><b class='flag-5'>佳</b><b class='flag-5'>電子</b>D類音頻放大器架構(gòu)、技術(shù)趨勢及<b class='flag-5'>碳化硅</b>MOSFET應(yīng)用價(jià)值<b class='flag-5'>深度</b><b class='flag-5'>解析</b>

    電子SiC碳化硅MOSFET串?dāng)_抑制技術(shù):機(jī)理深度解析與基本半導(dǎo)體系級解決方案

    電子SiC碳化硅MOSFET串?dāng)_抑制技術(shù):機(jī)理深度解析
    的頭像 發(fā)表于 10-02 09:29 ?164次閱讀
    <b class='flag-5'>傾</b><b class='flag-5'>佳</b><b class='flag-5'>電子</b><b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b>MOSFET串?dāng)_抑制技術(shù):機(jī)理<b class='flag-5'>深度</b><b class='flag-5'>解析</b>與基本<b class='flag-5'>半導(dǎo)體</b>系級<b class='flag-5'>解決方案</b>

    電子1400V 碳化硅 (SiC) MOSFET 產(chǎn)品競爭力深度分析報(bào)告

    電子1400V 碳化硅 (SiC) MOSFET 產(chǎn)品競爭力深度分析報(bào)告
    的頭像 發(fā)表于 09-28 09:32 ?261次閱讀
    <b class='flag-5'>傾</b><b class='flag-5'>佳</b><b class='flag-5'>電子</b>1400V <b class='flag-5'>碳化硅</b> (<b class='flag-5'>SiC</b>) MOSFET 產(chǎn)品競爭力<b class='flag-5'>深度</b>分析報(bào)告

    電子能源汽車主驅(qū)技術(shù)演進(jìn)與SiC碳化硅功率模塊的深度價(jià)值分析報(bào)告

    電子能源汽車主驅(qū)技術(shù)演進(jìn)與SiC碳化硅功率模塊
    的頭像 發(fā)表于 09-16 13:55 ?554次閱讀
    <b class='flag-5'>傾</b><b class='flag-5'>佳</b><b class='flag-5'>電子</b>新<b class='flag-5'>能源</b>汽車主驅(qū)技術(shù)演進(jìn)與<b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b>模塊的<b class='flag-5'>深度</b>價(jià)值分析報(bào)告

    電子SiC碳化硅MOSFET開關(guān)行為深度研究與波形解析

    電子SiC碳化硅MOSFET開關(guān)行為深度研究與波形解析
    的頭像 發(fā)表于 09-01 11:32 ?1995次閱讀
    <b class='flag-5'>傾</b><b class='flag-5'>佳</b><b class='flag-5'>電子</b><b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b>MOSFET開關(guān)行為<b class='flag-5'>深度</b>研究與波形<b class='flag-5'>解析</b>

    電子SiC碳化硅MOSFET開關(guān)行為深度解析及體二極管的關(guān)斷特性

    電子SiC碳化硅MOSFET開關(guān)行為深度解析,特
    的頭像 發(fā)表于 09-01 08:53 ?852次閱讀
    <b class='flag-5'>傾</b><b class='flag-5'>佳</b><b class='flag-5'>電子</b><b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b>MOSFET開關(guān)行為<b class='flag-5'>深度</b><b class='flag-5'>解析</b>及體二極管的關(guān)斷特性

    基于SiC碳化硅功率模塊的高效、高可靠PCS解決方案

    亞非拉市場工商業(yè)儲能破局之道:基于SiC碳化硅功率模塊的高效、高可靠PCS解決方案 —— 為高溫、電網(wǎng)不穩(wěn)環(huán)境量身定制的技術(shù)革新
    的頭像 發(fā)表于 06-08 11:13 ?728次閱讀
    基于<b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b><b class='flag-5'>功率</b>模塊的高效、高可靠PCS<b class='flag-5'>解決方案</b>

    基于國產(chǎn)碳化硅SiC MOSFET的高效熱泵與商用空調(diào)系統(tǒng)解決方案

    基于BASIC Semiconductor基本半導(dǎo)體股份有限公司 碳化硅SiC MOSFET的高效熱泵與商用空調(diào)系統(tǒng)解決方案 BASiC基本股份Si
    的頭像 發(fā)表于 05-03 10:45 ?424次閱讀
    基于國產(chǎn)<b class='flag-5'>碳化硅</b><b class='flag-5'>SiC</b> MOSFET的高效熱泵與商用空調(diào)系統(tǒng)<b class='flag-5'>解決方案</b>

    電子提供SiC碳化硅MOSFET正負(fù)壓驅(qū)動(dòng)供電與米勒鉗位解決方案

    SiC碳化硅MOSFET正負(fù)壓驅(qū)動(dòng)供電與米勒鉗位解決方案 電子(Changer Tech)-
    的頭像 發(fā)表于 04-21 09:21 ?598次閱讀
    <b class='flag-5'>傾</b><b class='flag-5'>佳</b><b class='flag-5'>電子</b>提供<b class='flag-5'>SiC</b><b class='flag-5'>碳化硅</b>MOSFET正負(fù)壓驅(qū)動(dòng)供電與米勒鉗位<b class='flag-5'>解決方案</b>